DOI QR코드

DOI QR Code

Automatic Mesh Generation System for FE Analysis of 3D Crack

3차원 균열의 유한요소해석을 위한 자동요소분할 시스템

  • Lee, Ho-Jeong (Dept. of Mechanical System Engineering, Kyonggi University) ;
  • Lee, Joon-Seong (Dept. of Mechanical System Engineering, Kyonggi University)
  • 이호정 (경기대학교 기계시스템공학과) ;
  • 이준성 (경기대학교 기계시스템공학과)
  • Published : 2009.09.30

Abstract

This paper describes an automatic mesh generation system for finite element analysis of three-dimensional cracks. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three sub-processes: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional crack structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Practical performances of the present system are demonstrated through several mesh generations for 3D cracks.

본 논문은 3차원 균열의 유한요소해석을 위한 자동요소분할시스템에 대한 것으로, 논문의 구성은 퍼지지식처리, 버블메슁, 솔리드모델러로 구성된다. 새로운 요소분할과정은 (a) 해석모델인 기하학적 모델 정의, (b) 버블생성, (c), 요소분할로 구성되어 진다. 3차원 균열체를 위해 범용솔리드 모델러를 사용하였으며 버블은 존재하는 버블점들간의 거리가 그 점에서의 버블간격 함수와 유사한지를 결정하여 발생되어 진다. 버블간격 함수는 퍼지지식처리에 의해 잘 조절되어 진다. 요소생성에 관한 기본 툴로서는 데로우니기법이 사용되었다. 시스템의 실제적인 효용성을 검증하기 위해 3차원 균열에 대한 몇가지 예를 나타내었다.

Keywords

References

  1. Fuchs, A., "Almost regular Delaunay Triangula-tions", International Journal of Numerical Methods in Engineering, Vol. 40, pp. 4595-4610, 1997. https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4595::AID-NME274>3.0.CO;2-E
  2. Choi, C.K., Lee, G.H. and Chung, H.J., "An adaptive analysis in the element-free Galerkin method using bubble meshing technique", Comp. Struct. Eng., Vol. 15, pp. 84-95, 2002.
  3. Watson, D. F., "Computing The N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes", The Computer Journal, Vol. 24, No. 2, pp. 167-172, 1991. https://doi.org/10.1093/comjnl/24.2.167
  4. Buraty, E.,"Fully Automatic Three-Dimensional Mesh Generator for Complex Geometries", Int. Journal for Numerical Methods in Engineering, Vol. 30, pp. 931-952, 1990.
  5. J.S. Lee, "Development of the Fuzzy-Based System for Stress Intensity Factor Analysis", Int. Journal of Fuzzy Logic and Intelligent Systems, Vol. 12, No. 3, pp. 255-260, 2002. https://doi.org/10.5391/JKIIS.2002.12.3.255
  6. Schroeder, W. J. and Shephard, M. S., "Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh Generation", Int. Journal for Numerical Methods in Engineering, Vol. 29, pp. 37-55, 1990. https://doi.org/10.1002/nme.1620290105
  7. Al-Nasra, M. and Nguyen, D. T., "An Algorithm for Domain Decomposition in Finite Element Analysis", Computers and Structures, Vol. 39, No. 3/4, pp. 277-289, 1981.
  8. J.S. Lee, "Automated CAE System for Three-Dimensional Complex Geometry", Doctoral Thesis, The University of Tokyo, 1995.
  9. Zadeh, L. A., "Fuzzy algorithms", Information and Control, Vol. 12, pp. 94-102, 1968. https://doi.org/10.1016/S0019-9958(68)90211-8