Tumbling Dynamics of Rod-like and Semi-flexible Polymers in Simple Shear and Mixed Flows

  • Published : 2009.10.25

Abstract

In this work, we focus on the tumbling dynamics of rod-like and semi-flexible polymers in mixed flows, which vary from simple shear to pure rotation. By employing a bead-rod model, the tumbling pathways and periods are examined with a focus on the angular distribution of their orientation. Under the mixed flows, the tumbling dynamics agreed well with earlier studies and confirmed the predicted scaling laws. We found that the angular distribution deviates from that of shear flow as the flow type approaches pure rotation. Finally, we investigated the angular distribution of $\lambda$-DNA in a shear flow and found that the present numerical simulations were in quantitative agreement with the previous experimental data.

Keywords

References

  1. P. S. Doyle, J. Bibette, A. Bancaud, and J. L. Viovy, Science, 295, 2237 (2002) https://doi.org/10.1126/science.1068420
  2. N. P. Teclemariam, V. A. Beck, E. S. G. Shaqfeh, and S. J. Muller, Macromol., 40, 3848 (2007) https://doi.org/10.1021/ma062892e
  3. J. M. Kim and P. S. Doyle, Lab Chip, 7, 213 (2007) https://doi.org/10.1039/b612021k
  4. R. G. Larson, J. Rheol., 49, 1 (2005) https://doi.org/10.1122/1.1835336
  5. E. S. G. Shaqfeh, J. Non-Newton. Fluid Mech., 130, 1 (2005) https://doi.org/10.1016/j.jnnfm.2005.05.011
  6. T. T. Perkins, D. E. Smith, and S. Chu, Science, 276, 2016 (1997) https://doi.org/10.1126/science.276.5321.2016
  7. D. E. Smith, H. P. Babcock, and S. Chu, Science, 283, 1724 (1999) https://doi.org/10.1126/science.283.5408.1724
  8. C. M. Schroeder, R. E. Teixeira, E. S. G. Shaqfeh, and S. Chu, Phys. Rev. Lett., 95, 018301 (2005) https://doi.org/10.1103/PhysRevLett.95.018301
  9. R. E. Teixeira, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Macromolecules, 38, 581 (2005) https://doi.org/10.1021/ma048077l
  10. J. S. Lee, R. Dylla-Spears, N. P. Teclemariam, and S. J. Muller, Appl. Phys. Lett., 90, 074103 (2007) https://doi.org/10.1063/1.2472528
  11. A. Celani, A. Puliafito, and K. Turitsyn, Europhys. Lett., 70, 464 (2005) https://doi.org/10.1209/epl/i2005-10015-5
  12. K. S. Turitsyn, J. Exp. Theo. Phys., 105, 655 (2007) https://doi.org/10.1134/S1063776107090245
  13. S. Gerashchenko and V. Steinberg, Phys. Rev. Lett., 96, 038304 (2006) https://doi.org/10.1103/PhysRevLett.96.038304
  14. J. S. Lee, E. S. G. Shaqfeh, and S. J. Muller, Phys. Rev. E, 75, 040802 (2007) https://doi.org/10.1103/PhysRevE.75.040802
  15. B. Maier and J. O. Radler, Macromolecules, 33, 7185 (2000) https://doi.org/10.1021/ma000075n
  16. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Wiley, New York, 1987, Vol. 2
  17. P. S. Doyle, E. S. G. Shaqfeh, and A. P. Gast, J. Fluid Mech., 334, 251 (1997) https://doi.org/10.1017/S0022112096004302
  18. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, 1988
  19. A. Puliafito and K. Turitsyn, Physica D, 211, 9 (2005) https://doi.org/10.1016/j.physd.2005.07.016
  20. E. J. Hinch and L. G. Leal, J. Fluid Mech., 92, 591 (1979) https://doi.org/10.1017/S002211207900077X
  21. M. Somasi, B. Khomami, N. J. Woo, J. S. Hur, and E. S. G. Shaqfeh, J. Non-Newton. Fluid Mech., 108, 227 (2002) https://doi.org/10.1016/S0377-0257(02)00132-5
  22. T. W. Liu, J. Chem. Phys., 90, 5826 (1989) https://doi.org/10.1063/1.456389
  23. C. C. Hsieh, S. Jain, and R. G. Larson, J. Chem. Phys., 124, 044911 (2006) https://doi.org/10.1063/1.2161210
  24. J. S. Hur, E. S. G. Shaqfeh, and R. G. Larson, J. Rheol., 44, 713 (2000) https://doi.org/10.1122/1.551115