Ab Initio Dispersion Polymerization of Styrene in the Presence of the Poly(methacrylic acid) Macro-RAFT Agent

  • Wi, Yeon-Hwa (Department of Chemical Engineering, Inha University) ;
  • Lee, Kang-Seok (Department of Chemical Engineering, Inha University) ;
  • Lee, Byung-Hyung (Department of Chemical Engineering, Inha University) ;
  • Choe, Soon-Ja (Department of Chemical Engineering, Inha University)
  • Published : 2009.10.25

Abstract

Stable, spherical, polystyrene particles were synthesized in ab initio dispersion polymerization by using the poly(methacrylic acid)[PMAA] macro-RAFT agent. The presence of the PMAA macro-RAFT agent on the polystyrene (PS) particles was confirmed by NMR and FTIR spectroscopy. The PS particle size was influenced by the concentration of the RAFT agent and monomer due to the initial nucleation. When the concentration of the PMAA macro-RAFT agent was increased from 2 to 10 wt% relative to the monomer, the average particle size decreased from 2.31 to 1.36 ${\mu}m$, the conversion decreased from 93.3 to 88.9%, the weight-average molecular weight increased from 46,300 to 150,200 g $mol^{-1}$ and the PDI decreased from 2.79 to 1.94, respectively. In particular, the incorporation of 10 wt% of PMAA macro-RAFT agent produced monodisperse PS spheres of 1.36 ${\mu}m$ with a coefficient of variation (CV) of 6.44%. Thus, the PMAA macro-RAFT agent worked as a reactive steric stabilizer providing monodisperse, micron-sized, PS particles.

Keywords

References

  1. J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T. N. Nilsen, P. C. Mork, P. Stenstad, E. Hornes, and O. Olsvik, Prog. Polym. Sci., 17, 87 (1992) https://doi.org/10.1016/0079-6700(92)90017-S
  2. S. Kawaguchi and K. Ito, Adv. Polym. Sci., 175, 299 (2005)
  3. G. Riess and C. Labbe, Macromol. Rapid. Commun., 25, 401 (2004) https://doi.org/10.1002/marc.200300048
  4. I. Bica, J. Ind. Eng. Chem., 13, 299 (2007)
  5. K. C. Lee and S. Y. Lee, Macromol. Res., 15, 244 (2007) https://doi.org/10.1007/BF03218783
  6. K. E. Barrett, Dispersion Polymerization in Organic Media, Wiley, New York, 1975
  7. J. L. Cawse, Dispersion Polymerization, P. A. Lovell and M. S. El-Aasser, Eds., in Emulsion Polymerization and Emulsion Polymers, Wiley, New York, 1997
  8. A. J. Paine, W. Luymes, and J. McNulty, Macromolecules, 23, 3104 (1990) https://doi.org/10.1021/ma00214a012
  9. S. Schen, E. D. Sudol, and M. S. El-Assser, J. Polym. Sci., Polym. Chem. Ed., 31, 1393 (1993) https://doi.org/10.1002/pola.1993.080310606
  10. H. Jung, K. Lee, S. E. Shim, S. Yang, J. M. Lee, B. H. Lee, and S. Choe, Macromol. Res., 12, 512 (2004) https://doi.org/10.1007/BF03218436
  11. F. L. Baines, S. Dionisio, N. C. billingham, and S. P. Armes, Macromolecules, 29, 3096 (1996) https://doi.org/10.1021/ma951767s
  12. M. A. Winnik, R. Lukas, W. F. Chen, P. Furlong, and M. D. Croucher, Macromol. Chem. Macromol. Symp., 10, 483 (1987)
  13. I. Piirm, Polymeric Surfactants, Surfactant Science Series 42, Marcel Dekker, New York, 1992, p 1
  14. P. Lacroix-Desmazes, Polymerisation en Dispersion, in Les Latex Synthetiques, J. C. Daniel and C. Pichot, Eds., Tec & Doc, Paris, 2006, p 259
  15. D. Wang, V. L. Dimonie, E. D. Sudol, and M. S. El-Aasser, J. Appl. Polym. Sci., 84, 2692 (2002) https://doi.org/10.1002/app.10592
  16. K. C. Berger and G. Branrup, Transfer Constants to Monomer, Polymer Catalyst, Solvent, and Additive in Free Radical Polymerization, in Polymer Handbook, 3^{rd} edition, J. Brandrup and E. H. Immergut, Eds., J. Wiley & Sons, New York, 1989, p \Pi/81
  17. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, 26, 2987 (1993) https://doi.org/10.1021/ma00063a054
  18. S. E. Shim, S. Oh, Y. H. Chang, M. J. Jin, and S. Choe, Polymer, 45, 4731 (2004) https://doi.org/10.1016/j.polymer.2004.05.011
  19. J. S. Wang and K. Matyjaszewski, Macromolecules, 28, 7901 (1995) https://doi.org/10.1021/ma00127a042
  20. G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, and A. Postma, et al., Polym. Int., 49, 993 (2000) https://doi.org/10.1002/1097-0126(200009)49:9<993::AID-PI506>3.0.CO;2-6
  21. H. Brouwer, M. J. Monteiro, J. G. Tsavalas, and F. J. Schork, Macromolecules, 33, 9239 (2000) https://doi.org/10.1021/ma001205v
  22. J. M. Lee, O. H. Kim, S. E. Shim, B. H. Lee, and S. Choe, Macromol. Res., 13, 236 (2005) https://doi.org/10.1007/BF03219058
  23. J. Chiefari, R. T. A. Mayadunne, C. L. Moad, G. Moad, E. Rizzardo, A. Postma, and M. A. Skidmore, Macromolecules, 36, 2273 (2003) https://doi.org/10.1021/ma020883+
  24. J. M. Lee, B. H. Lee, and S. Choe, Polymer, 47, 3838 (2006). J. M. Lee and S. Choe, J. Ind. Eng. Sci., 12, 648 (2006)
  25. J. M. Lee, P. J. Saikia, K. Lee, and S. Choe, Macromolecules, 1, 2037 (2008)
  26. M. Bathfield, F. D’Agosto, R. Spitz, M. T. Charreyre, C. Pichot, nd T. Delair, Macromol. Rapid Commun., 28, 1540 (2007) https://doi.org/10.1002/marc.200700291
  27. Y. Wi, K. Lee, B. H. Lee, and S. Choe, Polymer, 49, 5626 (2008) https://doi.org/10.1016/j.polymer.2008.10.014
  28. S. E. Shim, Y. D. Shin, J. W. Jun, K. S. Lee, H. J. Jung, and S. hoe, Macromolecules, 36, 7994 (2003) https://doi.org/10.1021/ma034331i