A Similarity Ranking Algorithm for Image Databases

이미지 데이터베이스 유사도 순위 매김 알고리즘

  • 차광호 (서울산업대학교 컴퓨터공학과)
  • Published : 2009.10.15

Abstract

In this paper, we propose a similarity search algorithm for image databases. One of the central problems regarding content-based image retrieval (CBIR) is the semantic gap between the low-level features computed automatically from images and the human interpretation of image content. Many search algorithms used in CBIR have used the Minkowski metric (or $L_p$-norm) to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information. Our new search algorithm tackles this problem by employing new similarity measures and ranking strategies that reflect the nonlinearity of human perception and contextual information. Our search algorithm yields superior experimental results on a real handwritten digit image database and demonstrates its effectiveness.

이 논문은 이미지 데이터베이스를 위한 유사도 순위 매김 알고리즘을 제시한다. 이미지 검색의 문제점 중 하나가 이미지로부터 자동적으로 계산한 하위 레벨 특성과 인간 지각과의 의미 차이이며, 검색시에 이미지 유사도 측정을 위해 많은 알고리즘에서는 민코프스키 측정법($L_p$-norm)을 사용하고 있다. 그러나 민코프스키 측정법은 인간 시각 시스템의 비선형적 특성과 문맥 정보를 반영하지 못한다. 본 알고리즘에서는 인간 지각의 비선형성과 문맥 정보를 반영하는 유사도와 탐색 알고리즘을 통해 이 문제를 해결한다. 본 알고리즘을 필기체 숫자 이미지 데이터베이스에 적용하여 성능의 우수성과 효과를 증명하였다.

Keywords

References

  1. Ishikawa, Y, Subramanya, R, and Faloutsos, C., 'Mindfieader: Querying databases through multiple examples,' Proc. VLDB, pp.218-227, 1998
  2. Rui, Y, et aI., 'Relevance feedback: A Power tool for interactive content-based image retrieval,' IEEE Trans. Circuits and Video Technology, vol.8, no.5, pp.644-644, 1998 https://doi.org/10.1109/76.718510
  3. Rui, Y, Huang, T.S., and Mehrotra, S., 'Contentbased image retrieval with relevance feedback in MARS,' Proc. ICIP, pp.815-818, 1997 https://doi.org/10.1109/ICIP.1997.638621
  4. Tong, S. and Chang, E., 'Support Vector Machine Active Learning for Image Retrieval,' Proc. ACM Multimedia, pp.107-118, 2001 https://doi.org/10.1145/500141.500159
  5. Wu, L., Faloutsos, C., Sycara, K, and Payne, T.R., 'FALCON: Feedback Adaptive Loop for Content-Based Retrieval,' Proc. VLDB, pp.297-306, 2000
  6. Zhou, D. et al., 'Learning with Local and Global Consistency,' Advances in Neural Information Processing Systems, 16, MIT Press, Cambridge, MA,2004
  7. Haykin, S., Neural Networks: A Comprehensive Foundation, Maxmillan, NY, 1994
  8. Scholkopf, B. et al., 'Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers,' IEEE Trans. Signal Processing, vol.45, pp.2758-2765, 1997 https://doi.org/10.1109/78.650102
  9. Vapnik, V.N., Statistical Learning Theory, Wiley, NY, 1998
  10. Hoi, C.-H. and Lyu, M., 'A novel log-based relevance feedback technique in content-based image retrieval,' Proc. ACM Multimedia, pp.24-31, 2004 https://doi.org/10.1145/1027527.1027533
  11. He, X., Ma, W.-Y, and Zhang, H.- J. 'Learning an image manifold for retrieval,' Proc. ACM Multimedia, pp.17-23, 2004 https://doi.org/10.1145/1027527.1027532
  12. Wu, G., Chang, KY., and Panda, N., 'Formulating Context-dependent Similarity Functions,' Proc. ACM Multimedia, pp.725-734, 2005 https://doi.org/10.1145/1101149.1101307
  13. Goh, K-S., Li, B., and Chang, E., 'DynDex: A Dynamic and Non-metric Space Indexer,' Proc. ACM Multimedia, pp.466-475, 2002 https://doi.org/10.1145/641007.641107
  14. Valois, RL.De and Valois, K.K.De, Spatial Vision, Oxford Science Pub., Oxford, 1988
  15. Shi, J and Malik, J., 'Normalized Cuts and Image Segmentation,' IEEE Trans. PAMI, vol.22, no.8, pp.888-905, 2000 https://doi.org/10.1109/34.868688
  16. Scholkopf, B., Smola, A., and MOller, K, 'Nonlinear Component Analysis as a Kernel Eigenvalue Problem,' Neural Computation, vol.10, pp.1299-1319, 1998 https://doi.org/10.1162/089976698300017467
  17. Ng, AY., Jordan, M.L, and Weiss, Y, 'On Spectral Clustering: Analysis and Algorithm,' Advances in Neural Information Processing Systems, 14, MIT Press, MA, 2001
  18. LeCun, Y et al, 'Gradient-based learning applied to document recognition,' Proceedings of the IEEE, vol.86, no.11, pp.2278-2324, 1998 https://doi.org/10.1109/5.726791