
73

말소리와 음성과학 제1권 제3호 (2009)

pp. 73~85

Synthesis and Evaluation of Prosodically Exaggerated Utterances

Yoon, Kyuchul1)

ABSTRACT

This paper introduces the technique of synthesizing and evaluating human utterances with exaggerated or atypical prosody.
Prosody exaggeration can be implemented by manipulating either the fundamental frequency (F0) contour, the segmental
durations, or the intensity contour of an utterance. Of these three prosodic elements, two or more can be exaggerated at the
same time. The algorithms of synthesis and evaluation were suggested. Learner utterances exaggerated in each of the three
prosodic features were evaluated with respect to their original native versions in terms of the differences in their F0 contours,
the segmental durations, and the intensity contours. The measure of differences was the Euclidean distance metric between the
matching points in their F0 and intensity contours. The measure was calculated after the exaggerated learner utterances were
aligned by the segments and rendered identical to their native version in terms of their segmental durations. For the evaluation
of the segmental durations, no prior modifications were made in durations and the same measure was used. The results from
the pilot experiment suggest the viability of this measure in the evaluation of learner utterances with atypical prosody with
respect to their native versions.

Keywords: speech synthesis, prosody evaluation, prosody, fundamental frequency, segmental durations, intensity, Euclidean
distance, Praat, English

1. Introduction

The importance of prosody in the production and perception of

speech is well-known. Acquiring the correct prosody of a target

language is even more important in learning second languages in

order to reach the level of fluency of the native speakers.

Compared with the learning of the segmental aspects of a

language, learning the prosodic aspects can be more difficult. It

may not be easy for teachers to find the right tools to teach the

target prosody to learners of the second language. It is also

possible that the theories of the prosody for the target language

are not very “learner-friendly”, leaving language teachers to resort

to the simpler but inadequate intonation patterns found in the

1) This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, Basic
Research Promotion Fund) (KRF-2007-327-A00310).

Received: July 9, 2009
Revision received: August 7, 2009
Accepted: August 23, 2009

traditional grammar books.

The prosody of a language can be regarded as a combination

of at least three physical components. The fundamental frequency

(i.e. F0) contour, also known as the intonation contour, is maybe

the most emphasized of the three components in language

education. Many students even identify the F0 contour with the

prosody, which of course is not true. The second component is

the segmental durations, which are also known to contribute to

the prosody of an utterance. The phrase-final lengthening is one

of such cases where the segmental durations play an important

role. The third component is the intensity contour, generally

known as the contour of loudness of an utterance.

To a greater of lesser degree, all these three components are

regarded as contributing to the overall prosodic pattern of an

utterance in a language. The roles and the interaction of these

prosodic components are a good source of research for many

linguists. The findings from such research can be reflected in

language education. For this to happen, one needs to be able to

manipulate each of the prosodic components to suit one's needs.

It would also be necessary to manipulate two or all three

74 말소리와 음성과학 제1권 제3호 (2009)

Figure 1. The fundamental frequency (F0) contour of an utterance
Marianna!. The vertical axis for the F0 contour is in Hz. The F0
contour can be said to have two peaks and three valleys.

components at the same time. If language teachers were able to

manipulate the prosodic components at their will, students would

be more aware of the importance of the prosody in learning a

second language.

The ability to resynthesize given utterances with different

prosody can be a useful tool for language teachers. Repeating the

same utterance can be an inefficient way to teach language

prosody. If teachers were able to emphasize a certain aspect of

the prosody, for example the F0 contour of some parts of an

utterance, learners would be more aware of that aspect of the

prosody. In terms of the speech synthesis, the “emphasizing” can

be realized in different ways. One way would be to “exaggerate”

the particular prosodic aspect of an utterance. If it were the F0

contour, some parts of the utterance could be made higher than

the original F0 contour.

One purpose of this paper is to introduce the technique of

manipulating one or more of the prosodic components of an

utterance. The technique was implemented as a script in Praat [1].

The technique of manipulating the F0 contour and the segmental

durations is already available thanks to the work in [2]. However,

it is not easy for language teachers to apply the technique to

recorded utterances automatically. Moreover, the technique of

manipulating the intensity contour is well beyond the reach of

ordinary language teachers. Thus, the script tool to be introduced

in this paper can be a valuable tool for language teachers in

synthesizing utterances with exaggerated prosody and thus in

teaching the prosody of the target language efficiently.

The prosody manipulation is closely associated with the

evaluation of the prosodic aspects of an utterance. The technique

can be used to design a series of experimental stimuli in the

examination of measures proposed in the evaluation. For example,

the technique of synthesizing utterances with exaggerated prosody

introduced in this paper can be used to create a set of

incrementally exaggerated stimuli. By comparing the original

utterance produced by the native speaker and the exaggerated

stimulus synthesized by the technique, one can test the viability

of using some measure in the prosodic evaluation of the

utterances involved.

The other purpose of this paper is to use the technique of

prosody manipulation in order to test the viability of using the

Euclidean distance metric in the prosodic evaluation of the

utterances involved. The evaluation will be made in terms of the

three prosodic features, producing three separate scores for a pair

of utterances. The viability of each of the three scores will be

tested with a pilot experiment.

2. Methods

2.1 Exaggerating prosody
Depending on how you define the term “exaggeration”,

prosody can be exaggerated in different ways. Given an utterance

from a native speaker of the target language (See <Figure 1>),

the F0 contour of the utterance can be exaggerated either by

making all the F0 peaks higher or by making all the F0 valleys

lower or by moving the peaks and the valleys at the same time.

The peak can also be defined by specifying the frequency

difference between a neighboring peak and a valley. The

evaluation of the perceptual effects of these procedures could be

performed with a perception experiment. Since it is not the

purpose of this paper to do experiments to evaluate the perceptual

effects, it suffices to say that F0 contours can be exaggerated by

manipulating the F0 peaks and/or valleys of a recorded utterance.

Contrary to what can be done to exaggerate the F0 contour, it

appears that there is only one direction in terms of exaggerating

the segmental durations, that is, making segments longer. The

well-known phrase-final lengthening can be regarded as one form

of exaggerating segmental durations. In this case, the exaggeration

works by making the final syllable of the phrase longer, thereby

signaling the end of a phrasal organization of an utterance. There

does not seem to be any linguistic device in a normal utterance

that makes some part of an utterance shorter than usual to

achieve any perceptual goal.

The next thing to consider in terms of exaggerating the

segmental durations is where to exaggerate. The rules of thumb

here have much to do with the F0 contour. It is beyond doubt

that stressed syllables tend to become longer in durations.

Moreover, English stress is usually associated with higher F0

peaks at the word level. Thus, stressed syllables are produced

longer in durations and with higher F0 peaks. Therefore, duration

exaggeration can be defined as making longer the region that has

already been exaggerated by the F0 manipulation, i.e. the F0

Synthesis and Evaluation of Prosodically Exaggerated Utterances 75

Figure 2. The intensity contour of an utterance Marianna!. The
vertical axis for the intensity contour is in dB.

Figure 3. Parameter settings for the Praat script. The pop-up
window is composed of three sections for the F0 contour,
durations, and intensity contour exaggeration.

peaks. The manipulation of the F0 contour and the segmental

durations can be achieved by using the PSOLA algorithm

proposed in [2]. The algorithm implemented in Praat enables one

to manipulate the two prosodic components. However, the task is

a laborious one and not suitable for regular language teachers to

handle.

The intensity contour, as shown in <Figure 2>, can be

exaggerated either by making the intensity peaks higher or by

making the intensity valleys lower or by moving the peaks and

valleys at the same time. The manipulation of the intensity

contour can be achieved by manipulating the IntensityTier object

in Praat. A user can add or remove intensity points to the object

over time.

As suggested above, prosody exaggeration can be implemented

in different ways depending on how you see exaggeration.

Whichever method one may choose, one can only know how

listeners perceive the exaggeration by performing a series of

perception experiments. The technique of exaggerating prosody

automatically with the help of a computer script can be a

valuable tool in such experiments. Even if the user is not

interested in the perceptual aspects of the prosody, this technique

can be used as a practical tool in teaching prosody to learners of

other languages.

2.2 The algorithm
<Figure 3> shows the parameters that can be set by the user.

The dialog box pops up when the user runs the Praat script (See

Appendix). Of the three prosodic components, i.e. the F0 contour,

the segmental durations and the intensity contour, users can

choose which one(s) to exaggerate by clicking the radio button(s)

on the dialog box. If the user is only interested in seeing the

effect of exaggerating the F0 contour, she can do so by clicking

Yes of the ExaggerateFrequency item and clicking No to the

other two components. Any combination of the three prosodic

components should work fine.

In the first section on the F0 contour exaggeration, there is a

short explanation of what it means to exaggerate the F0 contour.

F0 exaggeration was defined in the current work as making the

F0 peaks higher and the F0 valleys lower. Users can manipulate

the F0 peaks and valleys by specifying the freqValue variable in

the section. By default, the script will move the peaks and

valleys by 20Hz, meaning that the F0 peaks will be 20Hz higher

and the F0 valleys 20Hz lower than their original height. The

identification of the F0 peaks and valleys is based on the F0

contour stylization algorithm implemented in Praat. The frequency

resolution of the algorithm is set as 2.0 semitones.

Here is how the F0 exaggerating algorithm works. Given the

stylized version of the F0 contour of the original utterance (See

<Figure 4>), the script starts comparing two neighboring pitch

points. If the F0 difference between the two pitch points is

greater than the threshold, specified in the freqThreshold variable

at the bottom of the dialog box in <Figure 3>, the pitch point

with a higher F0 value gets boosted by the amount specified in

the freqValue variable, while the pitch point with a lower F0

value gets lowered by the same amount. If the F0 values are the

same for the two pitch points, nothing happens. The process is

76 말소리와 음성과학 제1권 제3호 (2009)

Figure 4. The stylized F0 contour of the utterance Marianna!.

Figure 5. The stylized F0 contour of the utterance Marianna!
(Upper window). The lengthening of the pitch peaks (by 1.5
times) for the duration exaggeration (Lower window).

Figure 6. The intensity contour of the utterance Marianna! as
represented in the IntensityTier object in Praat. The round dots
represent the intensity points of the object. The intensity values
of the points are in dB.

repeated with the next two pitch points, the first of which is the

second pitch point from the previous step. Thus, in every step,

there is one overlapping pitch point. The reason for the existence

of the threshold frequency is that we do not want any minor

“bumps” in the stylized F0 contour to be exaggerated. With this

threshold, we can dictate how high an F0 bump has to be to be

called a legitimate peak.

The stylized F0 bumps in <Figure 4> can all be called

legitimate F0 peaks because the differences between the peaks

and the valleys are more than the F0 values specified in the

freqThreshold variable. Thus the two peaks will be made higher

and the valleys lower. After the exaggeration of the peaks and

the valleys, the manipulated, but still stylized, F0 contour is made

natural by smoothing the contour using the parabola function. The

number of points per parabola is specified in the numFreqPoints

variable (8 by default).

Duration exaggeration is defined as lengthening the stylized

pitch peaks by the amount specified in the durValue variable (1.5

by default) in the second section of the pop-up dialog box. The

neighboring valleys remain the original duration. In other words,

as shown in <Figure 5>, the segmental durations on the uphill of

a pitch peak will be increased linearly by 1.5 times the original

durations, while those on the downhill of the peak will be

decreased linearly by the same amount. The durations near the

pitch valleys are not shortened but remain the same as the

original values.

In order to avoid the situation where the minor pitch bumps

are involved in the exaggeration of the segmental durations, the

pitch bumps need to be screened with the freqThreshold value to

be identified as legitimate peaks. As mentioned above in the

section on the F0 contour exaggeration, a pitch bump can be

called a legitimate peak only if it is high enough. The frequency

threshold determines this height. If the height of either the uphill

or the downhill of the pitch bump is greater than the frequency

threshold, the bump can be called a peak. Only these peaks are

lengthened or exaggerated.

Exaggerating the intensity contour is defined as incrementally

increasing the intensity values toward the legitimate pitch peaks.

For the utterance in <Figure 6>, the legitimate peaks to be

exaggerated correspond to the stressed syllables of the word

Marianna. However, note that the locations of the peaks and their

neighboring valleys do not come from the intensity contour given

in <Figure 6>, but from the F0 contour given in <Figure 4>.

That is because the intensity exaggeration was defined in terms of

the pitch peaks, not in terms of the intensity peaks. The third

pitch point in <Figure 4> becomes the immediately neighboring

valley pitch point of the first legitimate pitch peak, which falls

on the fourth pitch point. The user can also specify the interval

between intensity points by setting the intTimeStep variable

(0.05sec by default).

The exaggeration of the intensity contour proceeds in between

the two locations, i.e. the uphill between the valley and its

immediately following peak. The dBValue variable (7 by defaults)

specified by the user is divided by the number of intensity points

between the two locations. The increment for each intensity point

is accumulated until the intensity point at the peak is reached. If,

for example, the dBValue is 14dB and there are seven intensity

points (See <Figure 6>) between the valley and the peak, the

increment will be 2 dB per intensity point. Then, the accumulated

values for each of the seven intensity points will be 2, 4, 6, 8,

10, 12, 14 dB's respectively. Thus, the closer the intensity points

toward the peak, the greater become the accumulated intensity

values. That is, we do not add a single uniform intensity value to

all the intensity points to be exaggerated, but varying intensity

Synthesis and Evaluation of Prosodically Exaggerated Utterances 77

values to them. Therefore, the dBValue specified by the user is

the maximum intensity value that the intensity point at the peak

would get in the process of intensity exaggeration. The reverse

process is done for the downhill between the peak and its

immediately following valley.

The algorithm of intensity exaggeration is not based on any

perception experiments, but on trial and errors. Adding a uniform

value to the intensity points would result in an unnatural intensity

contour. It is reasonable to think that the intensity contour should

increase or decrease without any audible “jumps”. Gradual

increase of the intensity values is one way to achieve this goal. It

may be a good idea to consider non-linear mathematical functions

for the manipulation of intensity points in the future.

2.3 Evaluating exaggerated prosody
The evaluation here refers to the comparison of the

exaggerated or atypical utterance with its non-exaggerated or

typical original utterance. As in the exaggeration, the evaluation

of the two utterances proceeded in terms of the three prosodic

components. Of the three components, the evaluation of the F0

contour and the intensity contour was performed after the

segmental durations of the two utterances were made identical.

For this to work, the two utterances were manually aligned by

the segments and their segmental durations were rendered

identical using the technique proposed in [3]. For the evaluation

of the segmental durations, however, no durational modifications

were made to the two utterances and the differences between

matching segmental durations were compared.

The durational modifications prior to the evaluation of the F0

and intensity contour was the key. Without any control in the

durations of the component segments of the utterances involved

in the evaluation, it would not be easy and fair to do the

comparison. Since the two utterances are assumed to be

composed of the same segments, once the component segments

are made identical, the comparison can proceed only in the

dimension of either the F0 contour or the intensity contour.

The evaluation was done separately in terms of each of the

three prosodic components. That is, the evaluation in terms of the

segmental durations is performed before any durational

modifications are made. After the durational manipulation, the

evaluation of the F0 contour is performed, followed by the

evaluation of the intensity contour. Thus, the exaggerated

utterance will have three separate evaluation scores with respect

to the original non-exaggerated version. Since no experiments

were performed with human evaluators, no suggestions can be

made at this time as to how these separate scores can be

accommodated to yield the overall score. The weights human

evaluators would assign to each of the three evaluation scores

could be assessed in the future work. In the current work, the

exaggerated utterance will only have three separate scores.

The measure of differences used in the evaluation was the

Euclidean distance metric between two matching F0 or intensity

points. The same measure was used for the segmental durations.

The Euclidean distance between two sets of points P = (p1, p2,

p3,..., pn) and Q = (q1, q2, q3,..., qn) in Euclidean n-space is

defined as follows. Here, the point P represents, for example, the

pitch point values of the original utterance and the point Q

represents those of the exaggerated utterance. As the equation

shows, the two F0 contours, for example, are not seen as two

separate curved lines in a two-dimensional plane, they are

mathematically considered as two separate points in an

n-dimensional space.

Since the F0 range for the two speakers are different,

normalization of the exaggerated version was performed prior to

the calculation of the distance metric. The difference in the mean

F0 values of the two utterances was added (or subtracted) to (or

from) the F0 contour of the exaggerated version. With the two F0

contours in the normalized pitch range, a point-to-point

comparison was made between matching pitch points (See

<Figure 7>). The pitch points with no matching counterparts are

not considered in the evaluation of the F0 contour. The farther

away the exaggerated pitch points are from the original pitch

points, the greater the Euclidean distance metric of all the pitch

points considered.

Figure 7. The F0 contours of the original (Upper panel) and the
exaggerated utterances (Lower panel). Since the segmental
durations are the same, comparison of the matching pitch points
can be made.

The same procedure can be applied in the evaluation of the

intensity contours (See <Figure 8>). The normalization of the

exaggerated utterance is done with respect to the difference in the

overall intensity means of the two utterances. The normalization

78 말소리와 음성과학 제1권 제3호 (2009)

Figure 10. The creation of the experimental stimuli with different
F0 contours. The black arrows indicate exaggerating with positive
values and the gray arrows with negative values in the freqValue
variable.

is followed by the point-to-point comparison of the matching

intensity points. The farther away the exaggerated intensity points

are from the original intensity points, the greater the Euclidean

distance metric among the intensity points involved.

Figure 8. The intensity contours of the original (Upper panel)
and the exaggerated utterances (Lower panel). Since the
segmental durations are the same, comparison of the matching
intensity points can be made.

The evaluation of the differences in the component segmental

durations was performed without prior durational modifications.

The differences in duration of the matching segments were used

to calculate the Euclidean distance (See <Figure 9>). Since the

utterances are labeled by the segments, one only needs to

compare the segments in the label files. Automatic segmentation

could help automate the labeling process.

Figure 9. The durational differences between the two utterances
of Never kill a snake with your bare hands.

2.4 An experiment
In order to examine the validity of using the Euclidean

distance metric in the evaluation of each of the three prosodic

components involved in the exaggeration, two utterances were

produced. The same sentence was uttered by a native speaker of

English (henceforth, the native) and by a native speaker of

Korean (henceforth, the learner). The segmental compositions

were the same and the two utterances were aligned and labeled

as shown in <Figure 9> above. The learner utterance was given

all the prosodic features of the native utterance by using the

technique proposed in [3]. Now the two utterances are considered

to have the same F0 contour, segmental durations and the

intensity contour.

The next step was to exaggerate the learner utterance

incrementally in terms of each of the three prosodic features. This

was done using the Praat script given in the Appendix. As shown

in <Figure 10>, the learner utterance was exaggerated from

-100Hz to +100Hz with a 10Hz interval. Given the F0 contour

exaggeration algorithm above, the -100Hz exaggeration means that

the pitch peaks of the learner F0 contour were made lower, not

higher, by 100Hz and the pitch valleys were made higher, not

lower, by 100Hz (The gray arrows). The negative values mean

the “reverse” exaggeration, making the peaks lower and the

valleys higher. The positive F0 values mean making peaks higher

and valleys lower (The black arrows). The matching pitch points

between the native utterance and the learner utterance were

compared to yield the Euclidean distance for the F0 contour. The

prediction here is that the more exaggerated or deviant the learner

utterance is than the native utterance, the greater the Euclidean

distance would become. In other words, greater Euclidean

distances mean more exaggerated, thus worse utterances compared

to the native utterance.

For the intensity contour, the learner utterance was exaggerated

from -25dB to +25dB with a 5dB interval. The -25dB

exaggeration means that the legitimate pitch peaks of the learner

intensity contour were made lower, not higher, by 25dB. The

negative intensity values mean the “reverse” exaggeration of the

intensity contour, making the pitch peaks lower. The positive

intensity values mean making the peaks higher in intensity. Note

that nothing was done to the valleys. The matching intensity

points between the native utterance and the learner utterance were

compared to yield the Euclidean distance for the intensity

contour. The same kind of prediction can be made. The more

exaggerated, and thus deviant, the learner utterance is than the

native utterance, the greater the Euclidean distance will be among

the intensity points involved. Greater distance metrics mean worse

utterances compared to the native utterance.

For the segmental durations, the pitch peaks of the learner

utterance were exaggerated or lengthened 0.25, 0.50, 0.75, 1.00, 1.50,

Synthesis and Evaluation of Prosodically Exaggerated Utterances 79

2.00, 2.50, 3.00 times those of the original utterance. The values less

than 1.00 mean that the segments were shortened. The values above

1.00 mean that they were lengthened. Note also that nothing was done

to the valleys. Then the durations of the matching segments between

the native utterance and the learner utterance were compared to yield

the Euclidean distance for the durations. It can be predicted that more

exaggerated utterances will yield greater Euclidean distances. Greater

distance metrics mean worse utterances compared to the native

utterance. The utterance used in the experiment was a sentence Never

kill a snake with your bare hands read by a male native speaker of

English (See <Figure 9>). From this template sentence, the

durationally modified versions and all the exaggerated versions were

synthesized.

3. Results

3.1 Prosody exaggeration
<Figure 11> shows the F0 contour of a one-word utterance

Marianna! before and after the exaggeration of the F0 contour.

The two pitch peaks were made higher and the valleys lower as

defined in the F0 exaggeration algorithm. It also means that the

two peaks were legitimate in the sense that the height of either

slope of each peak was greater than the threshold frequency,

which was 40Hz by default. The difference in frequency of the

first peak between the two versions is 20Hz as specified in the

variable freqValue.

Figure 11. The exaggeration of the F0 contour of the utterance
Marianna! before (Upper panel) and after (Lower panel) with
the default value of 20Hz. Note that the pitch peaks became
higher and the valleys lower. Compare the frequency values of
the first peak (247Hz vs. 267Hz).

The overall shape of the two F0 contours is not exactly the same.

The “loss” of the original F0 contour in the exaggerated version

can be attributed to the artifact of the setting (2 semitones by

default) of the stylization procedure in Praat. The stylizeSemitones

variable can be changed to different values, but the default value

works fine in most cases.

<Figure 12> shows the same utterance exaggerated in terms of

the segmental durations. As defined by the duration exaggeration

algorithm, only the legitimate pitch peaks were lengthened by 1.5

times as specified in the durValue variable. As shown in <Figure

5>, the lengthening starts from the immediately neighboring

valley to the following peak. Thus it is the peak that is 1.5 times

longer. The durations of the other segments lying on the uphill

from the valley to the peak get gradually greater until it is 1.5

times the original duration at the peak. For the segments lying on

the downhill from the peak to the following valley, the process is

reversed. Compare the total durations of the two utterances. The

exaggerated version is 0.165sec longer than the original version.

Figure 12. The exaggeration of the segmental durations of the
utterance Marianna! before (Upper panel) and after (Lower
panel) with the default value of 1.5 times. Note that only the
legitimate pitch peaks were lengthened. Compare the total
durations of the two utterances (1.600sec vs. 1.765).

<Figure 13> shows the intensity contour before and after the

exaggeration. As in the duration exaggeration, the intensity exaggeration

proceeded by gradually increasing the intensity values of the legitimate

pitch peaks identified earlier in the process of exaggeration.

Disregarding the F0 contour, it is clear that the intensity values in

dB of the pitch peaks got greater in the exaggerated version. For

the intensity values in the first peak (the dotted vertical line), it was

around 76dB before and 83dB after the exaggeration.

Figure 13. The exaggeration of the intensity contour of the
utterance Marianna! before (Upper panel) and after (Lower
panel) with the default value of 7dB for boosting peaks and
0.05sec intensity point interval. Only the legitimate peaks were
made louder. Compare the intensity values at the first pitch peak
(76.01dB vs.82.7dB).

<Figure 14> shows the result of performing exaggeration in

terms of two or all three prosodic components. The upper panel

is the original one-word utterance. The version in the middle

panel was exaggerated in its F0 contour and segmental durations.

The bottom panel added the intensity exaggeration. The

80 말소리와 음성과학 제1권 제3호 (2009)

Figure 16. The evaluation of the learner utterances with
exaggerated or deviant intensity contours. The Euclidean distance
measures are plotted along the varying degrees of intensity
exaggeration.

Figure 17. The evaluation of the learner utterances with
exaggerated or deviant segmental durations. The Euclidean
distance measures are plotted along the varying degrees of
duration exaggeration.

comparison of the F0 values, durations and intensity values at the

first peak (the dotted vertical line) shows that the exaggeration

was done as defined in the algorithm section. The F0 difference

is around 20Hz (248.3Hz vs. 267.7Hz), the intensity value

difference is around 7dB (76.14dB vs. 83.26dB) and the

durational difference is 0.165sec.

Figure 14. The exaggeration of the original utterance Marianna!
(Upper panel) in terms of both the F0 contour and the segmental
durations (Middle panel), and in terms of all the three prosodic
components (Bottom panel). The cursor (the dotted vertical line)
is at the first pitch peak.

3.2 Results of the experiment
The results from the experiment are shown in <Figure 15>,

<Figure 16>, and <Figure 17>. <Figure 15> shows the Euclidean

distance measures between the native utterance and the learner

utterances with varying degrees of F0 exaggeration. The distance

measure is minimum when no exaggeration is applied to the learner

utterance (0 in the horizontal axis), in which case the learner

utterance is the same as the native utterance in terms of the F0

contours. As the amount of exaggeration increases, so does the

distance measure, making the overall plot “v”-shaped. This implies

that the Euclidean distance measure can indeed be a good measure

of evaluating the F0 contour differences. Note, however, that the

measure is only valid among the utterances exaggerated following

the scheme introduced in the algorithm section.

Figure 15. The evaluation of the learner utterances with exaggerated
or deviant F0 contours. The Euclidean distance measures are plotted
along the varying degrees of F0 exaggeration.

<Figure 16> shows the Euclidean distance measures between

the native utterance and the learner utterances with varying

degrees of intensity exaggeration. As in <Figure 15>, the overall

pattern looks similar. The distance measure is minimum when no

exaggeration is applied to the learner utterance. As the degree of

the intensity exaggeration increases, so do the Euclidean distance

measures, implying that the Euclidean distance can be a good

measure for evaluating the intensity contour differences.

<Figure 17> shows the Euclidean distance measures between

the native utterance and the learner utterances with varying

degrees of duration exaggeration. Noting that a similar pattern can

be seen here, we can also say that the Euclidean distance can

work for evaluating the differences in segmental durations.

As mentioned before, it is not known how these three separate

measures of evaluation cooperate to yield the final measure of

difference between the native utterance and the learner utterance.

Experiments with human evaluators would reveal the “weights”

they may implicitly assign in the evaluation of the overall

Synthesis and Evaluation of Prosodically Exaggerated Utterances 81

difference in prosody.

4. Conclusion

This paper introduced the technique of exaggerating one or

more of the prosodic features of an utterance and implemented it

in a Praat script. The technique was also used in an experiment

designed to test the viability of using the Euclidean distance

metric in the evaluation of the utterances with different prosodic

features. The results from the experiment suggest that the

Euclidean distance metric can be a good measure in evaluating

utterances in terms of each of the three prosodic features.

However, no suggestions can be made at this time as to these

separate measures are combined to yield the overall prosodic

impression of an utterance. Experiments with human evaluators

could reveal the interactions of the measures at the perceptual

level.

The technique of manipulating one or more of the three

prosodic features of an utterance can be applied in many areas of

study. For example, it can be used in a perception experiment

designed to examine the role and the interaction of each of the

three prosodic features in sentence processing. In English

education, this technique can be employed to develop a tool for

teaching the prosody of the target language and to help improve

the pronunciation capability of the students at the sentence level

as well as at the word level.

The use of the Euclidean distance metric in the evaluation of the

utterances with different prosodic features needs to be verified with

more experiments. The experimental stimuli should cover more

utterances with prosodic features different from the ones used in the

current study. When the interactions of the three separate evaluation

measures are discovered, the ultimate measure could be used in the

automatic evaluation of the utterance prosody.

One limitation of the current work was that the prosody of the

learner utterance was evaluated with respect to that of the native

utterance of the same text. In a more advanced situation, any

utterances of the learner should be evaluated without their native

speaker versions. With a perfect prosody model of the target

language, the task could be achieved. A more practical alternative

could be to get help from the technology of automatic

text-to-speech (TTS) synthesis systems with more advanced

prosody models. For any utterances produced by the learner, the

TTS system could provide their native versions so that the

comparisons can be made to yield the evaluation measures.

References

[1] Boersma, P. (2001). “Praat, a system for doing phonetics by
computer”, Glot International, Vol. 5, No. 9/10, pp. 341-345.

[2] Moulines, E. & Charpentier, F. (1990). “Pitch synchronous
waveform processing techniques for text-to-speech synthesis
using diphones”, Speech Communication, Vol. 9, pp. 453-467.

[3] Yoon, K. (2007). “Imposing native speakers' prosody on
non-native speakers' utterances: The technique of cloning
prosody”, Journal of the Modern British & American
Language & Literature, Vol. 25, No. 4, pp. 197-215.

∙윤규철 (Yoon, Kyuchul)
영남대학교 영어영문학부

경상북도 경산시 대동 214-1
Tel: 053-810-2145 Fax: 053-810-4607
Email: kyoon@ynu.ac.kr
관심분야: 음성학, 음운론

현재 영어영문학부 교수

82 말소리와 음성과학 제1권 제3호 (2009)

Appendix

1. Script for prosody exaggeration
###
Given a sound file, this script stylizes the original pitch contour,
and exaggerates its F0 and intensity contour, and peak durations
automatically.
Version 3 ==> Either slope of a peak needs to be higher than the
threshold value.
NOTE) Users can check graphically how the original sound gets
exaggerated by following the pop-up Manipulation Editor
window.
NOTE) Users can also select which parameter(s) to exaggerate:
(1) F0 contour only
(2) Duration only (for the F0 peaks)
(3) Intensity contour only (for the F0 peaks)
(4) F0 + Duration only (1)+(2)
(5) F0 + Intensity contour only (1)+(3)
(6) Duration + Intensity contour only (2)+(3)
(7) All: F0 + Duration + Intensity (1)+(2)+(3)
###
F0 exaggeration algorithm:
1. Compare two neighboring pitch points in Hz.
2. The point with higher Hz gets boosted, while the lower one gets
lowered. If same, nothing happens. (Check version 3 changes above)
3. Move to the next two points, the first of which is the second
from the previous step. (i.e. advances by one pitch point)
Use values before boosting/lowering from the previous step.
4. Repeat step 1.
##
Duration exaggeration algorithm:
1. Lengthen stylized pitch tier object peaks durValue times.
2. Neighboring valleys maintain the original duration.
##
Intensity exaggeration algorithm:
1. Given a peak, the exaggeration begins from neighboring valleys;
If the user specifies 10dB for example, and the intervening
intensity points are ten between the valley and the peak, the dB
value for each point is incrementally increased. The first point,
corresponding to the valley point, is increased by 1dB, the second
by 2dB,..., the tenth, corresponding to the peak, by 10dB. The
same thing repeats for the downhill (from peak to valley) slope.
##
Script installation procedure:
(1) Start Praat : Praat > Open Praat script...
(2) Open this script "exaggerateF0-duration-button.praat
(3) In the script editor window : File > Add to dynamic menu...
(4) Replace "Do it..." with something like "Exaggerate!"
(5) Click [OK]
(6) Close Script Editor window
(7) You can now launch the script from within Praat using the
"Exaggerate!" button when a sound object is selected.
##
form Parameters
 comment ||
 comment F0 CONTOUR EXAGGERATION by boosting peaks & lowering valleys
 comment ||
 choice ExaggerateFrequency: 1
 button Yes
 button No
 natural stylizeSemitones 2
 natural freqValue_(Hz_diff_for_boosting_and_lowering) 20
 comment |||
 comment DURATIONS EXAGGERATION by lengthening peaks
 comment |||
 choice ExaggerateDuration: 1

button Yes
button No

 real durValue_(times_orig_duration_for_lengthening) 1.5
 comment |||
 comment INTENSITY CONTOUR EXAGGERATION
 comment |||
 choice ExaggerateIntensity: 1

button Yes
button No

 real intTimeStep 0.05
 real dBValue_(dB_boosting_for_peaks) 7
 comment ~~
 comment For peak selection
 natural freqThreshold_(peak_height_in_Hz) 40
 comment ~~
 comment For resynthesis (Default value would suffice)
 natural numFreqPoints_(per_parabola_for_resynthesis) 8
endform
Create a manipulation object for the sound object and stylized it.
Copy... soundObj
To Manipulation... 0.01 75 600
Rename... inFileManipObj
Copy... original
select Manipulation inFileManipObj
Edit
editor Manipulation inFileManipObj

Stylize pitch... stylizeSemitones Semitones
Close

endeditor
Copy... original_stylized
Create and store a pitch object from the manipulation object.

select Manipulation inFileManipObj
Extract pitch tier
Rename... inFilePitchTierObj
numPitchPoints = Get number of points
Flags to be used later on.
flagIdentifyPeakOnce = 0
flagUseExaggeratedF0 = 0
flagUseExaggeratedDur = 0

###
Check user's choice and call appropriate procedures
(1) F0 contour only
if (exaggerateFrequency$ = "Yes" and exaggerateDuration$ = "No"

...and exaggerateIntensity$ = "No")
call procExaggerateFreq freqValue

(2) Duration only (for the F0 peaks)
elsif (exaggerateFrequency$ = "No" and exaggerateDuration$ = "Yes"

...and exaggerateIntensity$ = "No")
call procExaggerateDur durValue

(3) Intensity contour only (for the F0 peaks)
elsif (exaggerateFrequency$ = "No" and exaggerateDuration$ = "No"

...and exaggerateIntensity$ = "Yes")
call procExaggerateInt dBValue

(4) F0 + Duration only: (1)+(2)
elsif (exaggerateFrequency$ = "Yes" and exaggerateDuration$ = "Yes"

...and exaggerateIntensity$ = "No")
call procExaggerateFreq freqValue
call procExaggerateDur durValue

(5) F0 + Intensity contour only: (1)+(3)
elsif (exaggerateFrequency$ = "Yes" and exaggerateDuration$ = "No"

...and exaggerateIntensity$ = "Yes")
If flag is 1, then the procExaggerateInt must use
"exaggeratedF0" sound from earlier procedures.
flagUseExaggeratedF0 = 1
call procExaggerateFreq freqValue
call procExaggerateInt dBValue

(6) Duration + Intensity contour only: (2)+(3)
elsif (exaggerateFrequency$ = "No" and exaggerateDuration$ = "Yes"

...and exaggerateIntensity$ = "Yes")
If flag is 1, then no need to identify the peak locations
twice.
flagIdentifyPeakOnce = 1
If flag is 1, then the procExaggerateInt must use
"exaggeratedDur" sound from earlier procedures.
flagUseExaggeratedDur = 1
call procExaggerateDur durValue
call procExaggerateInt dBValue

(7) All: F0 + Duration + Intensity: (1)+(2)+(3)
elsif (exaggerateFrequency$ = "Yes" and exaggerateDuration$ = "Yes"

...and exaggerateIntensity$ = "Yes")
If flag is 1, then no need to identify the peak
locations twice.
flagIdentifyPeakOnce = 1
If flag is 1, then the procExaggerateInt must use
"exaggeratedDur" sound from earlier procedures.
flagUseExaggeratedDur = 1
call procExaggerateFreq freqValue
call procExaggerateDur durValue
call procExaggerateInt dBValue

User selected three No's.
else

exit All I need is one or more Yes!
endif
############### END OF MAIN FUNCTION ###############

###
Procedure for exaggerating F0 contour
procedure procExaggerateFreq fValue
 # 'Exaggerating' loop. The exaggeration is performed on the pitch
 # tier object
 select PitchTier inFilePitchTierObj

 # A flag to signal whether a pitch point was modified or not
 flagModified = 0
 for i to numPitchPoints
 # For all the pitch points except for the last one.
 # This is necessary because the 'exaggerating' is done for two
 # neighboring pitch points. The last one has no such neighbor.
 if i <> numPitchPoints
 # Special treatment for the first pitch point
 if flagModified = 0

iPrevHz = Get value at index... i
If it's not the first pitch point, the next pitch point
from the earlier loop becomes the previous pitch point
in the current loop
else

iPrevHz = iNextHz
endif
Get the Hz value and the time values of the two points
iNextHz = Get value at index... (i+1)
iPrevTime = Get time from index... i
iNextTime = Get time from index... (i+1)
freqDiff = abs(iNextHz-iPrevHz)

Proceed if the frequency difference is bigger than the
threshold
if freqDiff > freqThreshold
 # Decide which is bigger
 biggerHz = imax(iPrevHz, iNextHz)

 # If the first of the two pitch points is bigger, boost it

Synthesis and Evaluation of Prosodically Exaggerated Utterances 83

 # by freqValue and lower the second by as much
 if biggerHz = 1

flagModified = 1
Remove point... i
Add point... iPrevTime (iPrevHz+fValue)
Remove point... (i+1)
Add point... iNextTime (iNextHz-fValue)

 # If the second is bigger, then do similar jobs
 elsif biggerHz = 2

flagModified = 1
Remove point... i
Add point... iPrevTime (iPrevHz-fValue)
Remove point... (i+1)
Add point... iNextTime (iNextHz+fValue)

 # If same, do nothing
 else

Do nothing
flagModified = 0

 endif
endif

 endif
endfor
 # Switch the exaggerated pitch tier object
 plus Manipulation inFileManipObj
 Replace pitch tier
 select Manipulation inFileManipObj
 Edit
 editor Manipulation inFileManipObj
 Interpolate quadratically... numFreqPoints
 Publish resynthesis
 Close
 endeditor
 Rename... exaggerated_F0
endproc
##
Procedure for exaggerating durations
procedure procExaggerateDur dValue
 # To exaggerate durations, the locations of peaks and valleys
 # need to be identified.
 call procIdentifyPeaks
 select Manipulation inFileManipObj
 Extract duration tier
 Rename... inFileDurTierObj
 # Add duration points at the peak locations
 for m to k

peakTime = timeOfPeaks'm'
leftValleyTime = timeOfLeftValley'm'
rightValleyTime = timeOfRightValley'm'
Add point... peakTime dValue
Add point... leftValleyTime 1
Add point... rightValleyTime 1

 endfor
 # Switch the exaggerated duration tier object
 plus Manipulation inFileManipObj
 Replace duration tier
 select Manipulation inFileManipObj
 Edit
 editor Manipulation inFileManipObj

Interpolate quadratically... numFreqPoints
Publish resynthesis
Close

 endeditor
 Rename... exaggerated_Dur
endproc
##
Procedure for exaggerating intensity contour
procedure procExaggerateInt iValue
 # To exaggerate the intensity, the locations of peaks and valleys
 # need to be identified. If the flag is 1, then we already got
 # the locations
 # from procExaggerateDur procedure.
 if flagIdentifyPeakOnce = 0

call procIdentifyPeaks
 endif

 if flagUseExaggeratedDur = 1
select Sound exaggerated_Dur

 elsif flagUseExaggeratedF0 = 1
select Sound exaggerated_F0

 else
select Sound soundObj

 endif

 To Intensity... 100 intTimeStep Yes
 Rename... intensityObj
 Copy... intensityCopy
 select Intensity intensityObj
 Down to IntensityTier
 Rename... intensityTierObj
 Copy... intensityTierCopy
 select IntensityTier intensityTierObj

 # For each peak and its surrounding valleys, exaggerate
 # intensity contour.
 for s to k
 peakTime = timeOfPeaks's'
 leftValleyTime = timeOfLeftValley's'
 rightValleyTime = timeOfRightValley's'

 # Exaggerate the uphill to the peak. Count the number of
 # intensity points
 select IntensityTier intensityTierObj
 indexOfLtValley = Get low index from time... leftValleyTime
 indexOfPeak = Get low index from time... peakTime
 numOfIntensityPoints = (indexOfPeak - indexOfLtValley) + 1
 # Determine the increment for each intensity point.
 pointIncrement = dBValue / numOfIntensityPoints
 # Now, rearrange the intensity points

for u to numOfIntensityPoints
 realIndexOfPoint = (indexOfLtValley + u) - 1

 select IntensityTier intensityTierObj
 timeOfPoint = Get time from index... realIndexOfPoint
 select Intensity intensityObj
 oldIntensityValue = Get value at time... timeOfPoint Cubic
 newIntensityValue = oldIntensityValue +

...(pointIncrement * u)

 select IntensityTier intensityTierObj
 Remove point... realIndexOfPoint
 Add point... timeOfPoint newIntensityValue
endfor

 # Exaggerate the downhill to the peak. Count the number of
 # intensity points
 select IntensityTier intensityTierObj
 # We already have the indexOfPeak from the uphill codes.
 indexOfRtValley = Get low index from time... rightValleyTime
 numOfIntensityPoints = (indexOfRtValley - indexOfPeak) + 1
 # Determine the increment for each intensity point.
 pointIncrement = dBValue / numOfIntensityPoints
 # Now, rearrange the intensity points
 for v to numOfIntensityPoints

x = (numOfIntensityPoints + 1) - v
realIndexOfPoint = (indexOfPeak + v) - 1
select IntensityTier intensityTierObj
timeOfPoint = Get time from index... realIndexOfPoint

select Intensity intensityObj
oldIntensityValue = Get value at time... timeOfPoint Cubic
newIntensityValue = oldIntensityValue + (pointIncrement * x)

select IntensityTier intensityTierObj
Remove point... realIndexOfPoint
Add point... timeOfPoint newIntensityValue

 endfor
 endfor
 # Before switching the exaggerated intensityTier object, neutralize
 # the intensityTier object of the sound object first.
 select Intensity intensityObj
 # Inverse the intensity object by getting the maximum and
 # subtracting self
 maxInt = Get maximum... 0 0 Parabolic
 Formula... 'maxInt' - self
 # And make IntensityTier object
 Down to IntensityTier
 Rename... inverseIntensityTierObj

 # Multiply the sound with its own inverse IntensityTier.
 if flagUseExaggeratedDur = 1

select Sound exaggerated_Dur
 elsif flagUseExaggeratedF0 = 1

select Sound exaggerated_F0
 else

select Sound soundObj
 endif
 plus IntensityTier inverseIntensityTierObj
 Multiply
 Rename... neutralizedSoundObj
 # And then by the exaggerated IntensityTier.
 plus IntensityTier intensityTierObj
 Multiply
 Rename... exaggerated_Int
endproc

##
Procedure for identifying peak locations
procedure procIdentifyPeaks
 select PitchTier inFilePitchTierObj
 # Identify the pitch peaks. Initialize the index of the peak
 # array variable
 k = 0
 # Except for the first and last pitch point, check if it's a peak
 for j from 2 to (numPitchPoints-1)
 leftPointFreq = Get value at index... (j-1)
 rightPointFreq = Get value at index... (j+1)
 currentPointFreq = Get value at index... j
 indexOfMax = imax(leftPointFreq, currentPointFreq, rightPointFreq)
 # Values to be checked to see if the peak is high enough
 leftHeight = abs(currentPointFreq-leftPointFreq)
 rightHeight = abs(currentPointFreq-rightPointFreq)
 # If the current point is at the peak, remember the time coordinate
 # in an array variable timeOfPeaks. Remember its neighboring
 # valleys
 if indexOfMax = 2

if (leftHeight > freqThreshold or rightHeight >
...freqThreshold)
 k = k + 1

84 말소리와 음성과학 제1권 제3호 (2009)

 timeOfPeaks'k' = Get time from index... j
 timeOfLeftValley'k' = Get time from index... (j-1)
 timeOfRightValley'k' = Get time from index... (j+1)
endif

 endif
 endfor
endproc
############## END OF SCRIPT ################

2. Script for F0 contour evaluation
##
Evaluates a set of native/learner sound files in separate folders in
terms of their F0 contours. They should have .TextGrid files labeled
by segments. The number of segments should be the same. Another
script "prosodyCloning-durationOnly.praat" should be in the same
folder as this one.
##
-------------------- F0 evaluation algorithm --------------------
1. Make the two sound files have the same segmental durations.
2. Normalize the learner F0 contour with respect to the native F0.
3. Extract the pitch contours and make them smooth.
4. Do the point-to-point comparison and log the Hz differences.
##
For 1, use the prosody-cloning script written by Kyuchul Yoon and
get the duration-modified version from the result files,
i.e. the new learner file should have the same segmental
durations as those of the native file. Use the new one
from now on.
For 2, query the mean pitch values from the two Pitch objects and
add/subtract the difference to/from the learner F0 contour
by using the "shift pitch frequencies" command from the
Manipulation Editor window. Republish synthesis. Now, we
have a new normalized learner sound file to use.
For 3, using the two updated versions, extract their Pitch objects
and smooth them using the "Smooth..." command of the Pitch
objects.
For 4, using the two smoothed Pitch objects, do a point-to-point
comparison and log the Hz differences.
##
form Specify parameters
 word nativeFolder_(with_native_utterances) native
 word nativeSound_(with_dot_wav) native.wav
 word nativeTextgrid_(with_dot_TextGrid) native.TextGrid
 word learnerFolder_(with_learner_utterances) learner
 word learnerSound_(with_dot_wav) ky_NeverKillASnake.wav
 word learnerTextgrid_(with_dot_TextGrid) ky_NeverKillASnake.TextGrid
 natural tierNumber 1
 comment A log file will be created with the filename prefix.
endform

prefix$ = learnerSound$ - ".wav"
logFile$ = prefix$ + ".log"
Print the header line for the log file.
fileappend 'logFile$' native'tab$'learner'tab$'numFrames'tab$'

...frameNo'tab$'time'tab$'nativeF0'tab$'learnerF0'tab$'

...diffF0'newline$'

For 1, use another script. This will create a duration-modified
version of the learner file. The sound object name is
synNonnatSoundObjD.
execute prosodyCloning-durationOnly.praat 'nativeFolder$'

...'nativeSound$' 'nativeTextgrid$' 'tierNumber'

...'learnerFolder$' 'learnerSound$' 'learnerTextgrid$'

...'tierNumber' 'learnerFolder$'
For 2, compare the mean of the overall pitch values and do the
normalization.
Read from file... 'nativeFolder$'/'nativeSound$'
Rename... nativeSoundObj
To Pitch... 0 75 600
Rename... nativePitchObj
nativeMeanHz = Get mean... 0 0 Hertz
Get the smoothed version for later pitch point comparison.
Smooth... 10
Rename... smoothNativePitchObj

select Sound synNonnatSoundObjD
Rename... learnerSoundObj
To Pitch... 0 75 600
Rename... learnerPitchObj
learnerMeanHz = Get mean... 0 0 Hertz
meanHzDiff = nativeMeanHz - learnerMeanHz

Now that we got the mean F0 difference, add/subtract it in the
manipulation editor.
select Sound learnerSoundObj
totalDuration = Get total duration
To Manipulation... 0.01 75 600
Rename... learnerManipObj
Edit
editor Manipulation learnerManipObj

Select... 0 totalDuration
Shift pitch frequencies... meanHzDiff Hertz
Publish resynthesis
Close

endeditor
Now we have the normalized (wrt/ mean Hz difference) version of the
learner sound.
Rename... normLearnerSoundObj
Save the file in the learner folder.
normLearnerSound$ = "normalized-" + learnerSound$
Write to WAV file... 'learnerFolder$'/'normLearnerSound$'

For 3, use the the duration-modified F0 normalized version of the
learner file to get the final smoothed pitch object.
To Pitch... 0 75 600
Smooth... 10
Rename... smoothLearnerPitchObj

For 4, use the two Pitch objects because they have the same number
of frames. Do a frame-to-frame comparison. For each frame, query
the time and get the Hz from the two PitchTier objects.
select Pitch smoothNativePitchObj
numFrames = Get number of frames
Loop through each frame
iCount = 0
for iFrame to numFrames

select Pitch smoothNativePitchObj
timeOfFrame = Get time from frame number... iFrame
nativeF0 = Get value in frame... iFrame Hertz
select Pitch smoothLearnerPitchObj
learnerF0 = Get value in frame... iFrame Hertz
diffF0 = nativeF0 - learnerF0
If diffF0 is not undefined, store the values in an array
variable.
if diffF0 <> undefined

iCount = iCount + 1
arrayDiffF0'iCount' = diffF0

endif
Save the information in the log file.
fileappend 'logFile$' 'nativeSound$''tab$''learnerSound$'
...'tab$''numFrames''tab$''iFrame''tab$''timeOfFrame:3'
...'tab$''nativeF0:0''tab$''learnerF0:0''tab$'
...'diffF0:0''newline$'

endfor
Calculate the sums of squares
sum = 0
for i to iCount

dummy = arrayDiffF0'i'
squareValue = dummy * dummy
sum = sum + squareValue

endfor
squareRootSum = sqrt(sum)
fileappend 'logFile$' 'newline$''newline$'Sums of squares of diffF0's

...is 'sum:0'
fileappend 'logFile$' 'newline$''newline$'Square root of the sums is

...'squareRootSum:0'
select all
#Remove
################### END OF SCRIPT ###################
3. Script for intensity evaluation
###
Evaluates a set of native/learner sound files in separate folders
in terms of their intensity contour. They should have .TextGrid
files labeled by segments. The number of segments should be the
same. Another script "prosodyCloning-durationOnly.praat" should be
in the same folder as this one.
###
-------------- Intensity evaluation algorithm --------------------
1. Make the two sound files have the same segmental durations.
2. Normalize the learner intensity contour with respect to the
native intensity.
3. Extract the intensity contours.
4. Do the point-to-point comparison and log the dB differences.
###
For 1, use the prosody-cloning script written by Kyuchul Yoon and
get the duration-modified version from the result files, i.e.
the new learner file should have the same segmental durations
as those of the native file. Use the new one from now on.
For 2, query the mean dB values from the two Intensity objects and
add/subtract the difference to/from the learner intensity
contour by using the "Formula..." command objects window.
Now, we have a new normalized learner sound file to use.
For 3, using the two updated versions, extract their Intensity
objects.
For 4, using the two Intensity objects, do a point-to-point
comparison and log the dB differences.
##
form Specify parameters
 word nativeFolder_(with_native_utterances) native
 word nativeSound_(with_dot_wav) NeverKillASnake.wav
 word nativeTextgrid_(with_dot_TextGrid) NeverKillASnake.TextGrid
 word learnerFolder_(with_learner_utterances) learner
 word learnerSound_(with_dot_wav) ky_NeverKillASnake.wav
 word learnerTextgrid_(with_dot_TextGrid) ky_NeverKillASnake.TextGrid
 natural tierNumber 1
 comment A log file will be created with the filename prefix.
endform

prefix$ = learnerSound$ - ".wav"
logFile$ = prefix$ + "-dB.log"
Print the header line for the log file.
fileappend 'logFile$' native'tab$'learner'tab$'numFrames'tab$'frameNo
...'tab$'time'tab$'nativedB'tab$'learnerdB'tab$'diffdB'newline$'

For 1, use another script. This will create a duration-modified
version of the learner file. The sound object name is
synNonnatSoundObjD.
execute prosodyCloning-durationOnly.praat

...'nativeFolder$''nativeSound$'

... 'nativeTextgrid$' 'tierNumber' 'learnerFolder$'

...'learnerSound$' 'learnerTextgrid$' 'tierNumber'

Synthesis and Evaluation of Prosodically Exaggerated Utterances 85

... 'learnerFolder$'
For 2, compare the mean of the overall intensity values and do the
normalization.
Read from file... 'nativeFolder$'/'nativeSound$'
Rename... nativeSoundObj
To Intensity... 100 0 yes
Rename... nativeIntensityObj
nativeMeandB = Get mean... 0 0 dB

select Sound synNonnatSoundObjD
Rename... learnerSoundObj
To Intensity... 100 0 yes
Rename... learnerIntensityObj
learnerMeandB = Get mean... 0 0 dB
meandBDiff = nativeMeandB - learnerMeandB

Now that we got the mean dB difference, add/subtract it in the
Intensity object.
select Intensity learnerIntensityObj
Formula... self + meandBDiff
Rename... normLearnerIntensityObj
For 3, we now have the normalized (wrt/ mean dB difference) version
of the learner Intensity Object. Save it to an intensity file.
Rename... normLearnerIntensityObj
Save the file in the learner folder.
normLearnerIntensity$ = "normalized-" + prefix$
Write to text file... 'learnerFolder$'/'normLearnerIntensity$'
For 4, use the two Intensity objects because they have the same
number of frames. Do a frame-to-frame comparison. For each frame,
query the time and get the dB from the two Intensity objects.
select Intensity nativeIntensityObj
numFrames = Get number of frames
Loop through each frame
iCount = 0
for iFrame to numFrames

select Intensity nativeIntensityObj
timeOfFrame = Get time from frame number... iFrame
nativedB = Get value in frame... iFrame
select Intensity normLearnerIntensityObj
learnerdB = Get value in frame... iFrame
diffdB = nativedB - learnerdB

If diffdB is not undefined, store the values in an array
variable.
if diffdB <> undefined

iCount = iCount + 1
arrayDiffdB'iCount' = diffdB

endif

Save the information in the log file.
fileappend 'logFile$' 'nativeSound$''tab$''learnerSound$'

...'tab$''numFrames''tab$''iFrame''tab$'

...'timeOfFrame:3''tab$''nativedB:2''tab$''learnerdB:2'
...'tab$''diffdB:2''newline$'

endfor

Calculate the sums of squares
sum = 0
for i to iCount

dummy = arrayDiffdB'i'
squareValue = dummy * dummy
sum = sum + squareValue

endfor
squareRootSum = sqrt(sum)
fileappend 'logFile$' 'newline$''newline$'Sums of squares of diffdB's

...is 'sum:0'
fileappend 'logFile$' 'newline$''newline$'Square root of the sums

...is 'squareRootSum:0'
select all
Remove
################### END OF SCRIPT ###################

4. Script for duration evaluation
##
Evaluates a set of native/learner sound files in separate folders
in terms of their segmental durations. They should have .TextGrid
files labeled by segments. The number of segments should be the same.
##
---------------- Duration evaluation algorithm --------------------
1. The native/learner utterances should be labeled segmentally
(depending on your definition of segments)
2. Do a segment-by-segment comparison between the two and log the
duration differences.
##
form Specify parameters
 word nativeFolder_(with_native_utterances) native
 word nativeTextgrid_(with_dot_TextGrid) NeverKillASnake.TextGrid
 word learnerFolder_(with_learner_utterances) learner
 word learnerTextgrid_(with_dot_TextGrid) ky_NeverKillASnake.TextGrid
 natural tierNumber 1
 comment A log file will be created with the filename prefix.
endform

prefix$ = learnerTextgrid$ - ".wav"
logFile$ = prefix$ + "-msec.log"
Print the header line for the log file.
fileappend 'logFile$'
native'tab$'learner'tab$'numSegs'tab$'segNo'tab$'

...nativeSegID'tab$'learnerSegID'tab$'timeStart'tab$'

...nativeDur'tab$'learnerDur'tab$'diffDur'newline$'

Since all the sounds to be compared were labeled, no need to load
the sounds. Just load the .TextGrid files.
Read from file... 'nativeFolder$'/'nativeTextgrid$'
Rename... nativeObj
Read from file... 'learnerFolder$'/'learnerTextgrid$'
Rename... learnerObj

select TextGrid nativeObj
nativeNumIntervals = Get number of intervals... tierNumber
select TextGrid learnerObj
learnerNumIntervals = Get number of intervals... tierNumber
Check if the number of segments is the same, otherwise exit.
if nativeNumIntervals <> learnerNumIntervals

exit Warning! The number of segments do not match!
endif
Loop through each interval (or segment) for duration comparison.
for iInterval to nativeNumIntervals
 # For the native TextGrid object.
 select TextGrid nativeObj
 # Get the label of the current segment.
 nativeLabOfInterval$ = Get label of interval... tierNumber iInterval
 # If there is no label in the current interval, then give it
 # "No_label".
 if length(nativeLabOfInterval$) = 0

nativeLabOfInterval$ = "No_label"
 endif
 # Get the duration of the current segment.
 nativeStartOfInterval = Get starting point... tierNumber iInterval
 nativeEndOfInterval = Get end point... tierNumber iInterval
 nativeDurOfSeg = nativeEndOfInterval - nativeStartOfInterval
 nativeDur = nativeDurOfSeg * 1000

 # For the learner TextGrid object
 select TextGrid learnerObj
 # Get the label of the current segment.
 learnerLabOfInterval$ = Get label of interval... tierNumber iInterval
 # If there is no label in the current interval, then give it \
 # "No_label".
 if length(learnerLabOfInterval$) = 0

learnerLabOfInterval$ = "No_label"
 endif
 # Get the duration of the current segment.
 learnerStartOfInterval = Get starting point... tierNumber iInterval
 learnerEndOfInterval = Get end point... tierNumber iInterval
 learnerDurOfSeg = learnerEndOfInterval - learnerStartOfInterval
 learnerDur = learnerDurOfSeg * 1000
 # Get the difference in duration of the two matching segments.
 diffDur = nativeDur - learnerDur
 arrayDiffDur'iInterval' = diffDur
 # Save the information in the log file.
 fileappend 'logFile$' 'nativeTextgrid$''tab$''learnerTextgrid$'
...'tab$''nativeNumIntervals''tab$''iInterval''tab$'
...'nativeLabOfInterval$''tab$''learnerLabOfInterval$'
...'tab$''nativeStartOfInterval:3''tab$''nativeDur:0''tab$'
...'learnerDur:0''tab$''diffDur:0''newline$'
endfor

Calculate the sums of squares
sum = 0
for i to nativeNumIntervals

dummy = arrayDiffDur'i'
squareValue = dummy * dummy
sum = sum + squareValue

endfor
squareRootSum = sqrt(sum)
fileappend 'logFile$' 'newline$''newline$'Sums of squares of diffDur's

...is 'sum:0'
fileappend 'logFile$' 'newline$''newline$'Square root of the sums is

...'squareRootSum:0'
select all
Remove
################### END OF SCRIPT ###################

