DOI QR코드

DOI QR Code

벤치 규모 연속반응시스템에서 저급 열분해유 분해반응에 대한 반응온도 프로그램의 영향

Effect of Reaction Temperature Program on Thermal Degradation of Low-quality Pyrolytic Oil for Bench-scale Continuous Reaction System

  • 이경환 (한국에너지기술연구원 폐기물에너지연구센터) ;
  • 남기윤 (한국에너지기술연구원 폐기물에너지연구센터)
  • Lee, Kyong-Hwan (Wastes Energy Research Center, Korea Institute of Energy Research) ;
  • Nam, Ki-Yun (Wastes Energy Research Center, Korea Institute of Energy Research)
  • 발행 : 2009.09.30

초록

본 연구에서는 상용운전 중에 있는 반연속식 로터리 킬른형 열분해반응기에 지자체에서 발생되는 필름형 혼합 폐플라스틱을 투입한 후 열분해하여 얻은 저급의 열분해유를 세 형태의 반응온도 프로그램에서 분해반응시키고, 여기에서 얻어지는 생성유의 특성을 논의하였다. 원료인 저급 열분해유의 특성은 원소분석 및 발열량 분석, SIMDIST 분석으로 확인하였고, 각 반응온도 프로그램에 따른 분해반응 결과는 각 성분의 수율분포, 액상 생성물의 누적수율과 생성비 등으로 논의하였다. 연구결과는 한 단계 반응온도 프로그램에 비해 다단계 반응온도 프로그램의 경우가 원하는 생성물인 오일수율이 높았고, 상대적으로 잔류물의 수율은 낮게 나타났다. 연속적인 열분해반응에서 반응온도 프로그램은 생성물의 수율분포 등 생성유 특성에 많은 영향을 주었다.

The characteristics of product materials obtained from thermal degradation of low-qualify pyrolytic oil were investigated in this study. The reactants were produced by pyrolysis of mixed plastic waste with film type in a commercial rotary kiln reaction system. The properties of reactants were measured by elemental analysis, calorimetry analysis and SIMDIST analyst. The result of degradation experiments with different reaction temperature programs was discussed through product yields, cumulative yields and production rates of oil products. The multi-step reaction temperature program resulted in higher yields of product oils and lower yields of residues than one-step reaction temperature program. The product characteristics such as production yield and the rate of oil products etc. were influenced by reaction temperature program in the continuous thermal degradation.

키워드

참고문헌

  1. Phae, C.-G., Kim, Y.-S., Jo, C.-H., and Pyoun, U.-S., "Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics," J. Energ. Eng., 14(2), 159-166 (2005).
  2. Mohammad, N. S., and Halim, H. R., "Pyrolysis of Mixed Plastic for the Recovery of Useful Products," Fuel Process. Technol., 90, 545-552 (2009). https://doi.org/10.1016/j.fuproc.2009.01.003
  3. Buekens, A. G., and Huang, H., "Catalytic Plastics Cracking for Recovery of Gasoline-range Hydrocarbons from Municipal Plastic Wastes," Resour. Conserv. Recy., 23, 163-181 (1998). https://doi.org/10.1016/S0921-3449(98)00025-1
  4. Demirbas, A., "Pyrolysis of Municipal Plastic Wastes for Recovery of Gasoline-range Hydrocarbons," J. Anal Appl. Pyrol., 72, 97-102 (2004). https://doi.org/10.1016/j.jaap.2004.03.001
  5. Korea Institute of Energy Research, "Refinery Apparatus of Fuel Oil and Its Pyrolysis System," Korea Patent No. 0736845 (2007).
  6. Lee, K.-H., "Thermal and Catalytic Degradation of Waste HDPE," in Scheirs, J., and Kaminsky, W., Eds., Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, UK, 129-160 (2006).
  7. Lee, K.-H., "Process Development of Alternative Fuel Oil Production from Plastic Wastes," NEWS & INFORMATION FOR CHEMICAL ENGINEERS., 24(6) 589-596 (2006).
  8. de la Puente, G., Klocker, C, and Sedran, U., "Conversion of Waste Plastics into Fuels - Recycling Polyethylene in FCC," Appl. Catal., 36, 279-285 (2002). https://doi.org/10.1016/S0926-3373(01)00287-9
  9. Lin, Y.-H., and Yang, M.-H., "Catalytic Conversion of Commingled Polymer Waste into Chemicals and Fuels over Spent FCC Commercial Catalyst in a Fluidised-bed Reactor," Appl. Catal., 69, 145-153 (2007). https://doi.org/10.1016/j.apcatb.2006.07.005
  10. Miranda, R., Pakdel, H., Roy, C, and Vasile, C, "Vacuum Pyrolysis of Commingled Plastics Containing PVC II. Product Analysis," Polym. Degrad. Stabil., 73, 47-67 (2001). https://doi.org/10.1016/S0141-3910(01)00066-0
  11. Lee, K.-H, "Thermal and Catalytic Degradation of Pyrolytic Oil from Pyrolysis of Municipal Plastic Waste," J. Anal. Appl. Pyrol., 85, 372-379 (2009). https://doi.org/10.1016/j.jaap.2008.11.032
  12. Vasile, C, Brebu, M. A., Karayildirim, T., Yanik, J., and Darie, H., "Feedstock Recycling from Plastics and Thermosets Fractions of Used Computers. II. Pyrolysis oil upgrading," Fuel., 86, 477-485 (2007). https://doi.org/10.1016/j.fuel.2006.08.010
  13. Arandes, J. M., Azkoiti, M. J., Torre, I., Olazar, M., and Castano, P., "Effect of HZSM-5 Catalyst Addition on the Cracking of Polyolefin Pyrolysis Waxes under FCC Conditions," Chem. Eng J., 132, 17-26 (2007). https://doi.org/10.1016/j.cej.2007.01.012
  14. Miskolczi, N., Bartha, L., and Deak, G., "Thermal Degradation of Polyethylene and Polystyrene from the Packaging Industry over Different Catalysts into Fuel-like Feed Stocks," Polym. Degrad. Stabil., 91, 517-526 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.01.056
  15. Lin, Y.-H., and Yang, M.-H., "Catalytic Pyrolysis of Polyolefin Waste into Valuable Hydrocarbons over Reused Catalyst from Refinery FCC Units," Appl. Catal., 328, 132-139 (2007). https://doi.org/10.1016/j.apcata.2007.05.039
  16. Aguado, J., Serrano, D. P., Miguel, G. S., Castro, M. C, and Madrid, S., "Feedstock Recycling of Polyethylene in a Two-step Thermo-catalytic Reaction System," J. Anal. Appl. Pyrol., 79, 415-423 (2007). https://doi.org/10.1016/j.jaap.2006.11.008