Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes

설폰화된 6FDA계 폴리이미드 막을 이용한 기체투과특성

  • Rhim, Ji-Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Yoon, Seok-Won (Korea Electric Power Research Institute, Green Growth Laboratory) ;
  • Lee, Byung-Seong (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Lee, Bo-Sung (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong-Ihl (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 임지원 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 윤석원 (전력연구원, 녹색성장연구소) ;
  • 이병성 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 이보성 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과)
  • Published : 2009.09.30

Abstract

Polyimides synthesized by using 2,2'-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-diaminodiphenylmethane (DAM) were sulfonated according to reaction times, 5 min to 20 min. And the resulting polyimide membranes were investigated in terms of permeability and separation factor for $N_2$, $O_2$, and $CO_2$ gases. The introduction of bulky group, $-{SO_3}H$, leads to the decreases of both diffusivities and solubilities for all the range of reaction times. At 20 min of sulfonation, the diffusivity and solubility of $N_2$ decrease up to 21% and 26%, respectively. Overall separation efficiencies for $O_2/N_2$ and $CO_2/N_2$ increase as the reaction time increases to 20 min.

본 연구는 polyimide (Pl)막에 2,2'-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA)과 4,4'-dia-minodiphenylmethane (DAM)을 이용하여 폴리이미드 막을 중합반응을 통해 합성하였고, 합성된 Pl막을 5분에서 20분까지 설폰화 반응을 통해 막에 설폰산기를 도입하였다. 개질된 막에 대한 기체 투과도와 분리요인을 단일 기체인 $N_2$, $O_2$, $CO_2$에 대해 조사하였다. 설폰화 반응을 진행한 모든 범위의 시간에서 bulky한 그룹의 $-{SO_3}H$의 도입으로 인하여 확산도와 용해도는 모두 감소되었다. 설폰화 반응 시간이 20분 경과하였을 때, $N_2$ 가스의 확산도와 용해도는 각각 21%와 26%까지 감소하였다. 결과적으로 설폰화 반응이 20분이 지났을 때 $O_2/N_2$$CO_2/N_2$의 분리 효율은 증가하는 것을 알 수 있었다.

Keywords

References

  1. R. W. Baker, 'Membrane Technology and Applications', McGraw-Hill Co., New Work, 287 (2000)
  2. J. H. Kim, S. K. Hong, and S. J. Park, 'Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane', Korean Chem. Eng. Res., 45, 6, 619 (2007)
  3. M. Mulder, 'Basic Principles of Membrane Technology,' Kluwer Academic Publishers (1991)
  4. L. M. Robeson, 'The upper bound revisited', J. Membr. Sci., 320, 390 (2008) https://doi.org/10.1016/j.memsci.2008.04.030
  5. Y. G. Park and Y. M. Lee, 'Reviews on Gas Separation Membrane Process', Membrane Journal, 6(2), 59 (1996)
  6. W. J. Schell, 'Commercial applications for gas permeation membrane systems', J. Membr. Sci., 22, 217 (1985) https://doi.org/10.1016/S0376-7388(00)81281-8
  7. S. A. Stem, 'Polymers for Gas Separations: The Next Decade', J. Membr. Sci., 94, 1 (1994) https://doi.org/10.1016/0376-7388(94)00141-3
  8. M. Langsam and W. F. Burgoyne, 'Effect of diamine monomer structure on the gas permeability of polyimides. I. Bridged diamines', J. Polym. Sci., 31, 9091 (1993)
  9. H. Y. Ha, S. W. Nam, and S. A. Hong, 'Fabrication and Application of Inorganic Membranes', Membrane Journal, 9(2), 63 (1999)
  10. C. Fuhrman, M. Nutt, K. Vichtovonga, and M. R. Coleman, 'Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides', J. Appl. Polym. Sci., 91, 1174 (2004) https://doi.org/10.1002/app.13189
  11. K. Tanaka, Y. Osada, H. Kita, and K. I. Okamoto, 'Gas permeability and perm-selectivity of polyimides with large aromatic rings', J. Polym. Sci., Part B: Polym. Phys., 33, 1907 (1995) https://doi.org/10.1002/polb.1995.090331306
  12. T. H. Kim, W. J. Koros, C. R. Husk, and K. C. O'Brien, 'Relationship Between Gas Separation. Properties and Chemical Structures in a Series of Aromatic Polyamides', J. Membr. Sci., 37, 45 (1988) https://doi.org/10.1016/S0376-7388(00)85068-1
  13. S. A. Srem, Y. Mi, and M. Yamamoto, 'Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures', J. Polymer Sci., Pt B, 27, 1887 (1989) https://doi.org/10.1002/polb.1989.090270908
  14. K. Tanaka, H. Kita, M. Okano, and K. Okamoto, 'Permeability and permselectivity of gases in fluorinated and nonfluorinated polyimides', Polymer 33, 585 (1992) https://doi.org/10.1016/0032-3861(92)90736-G
  15. A. Shimazu, T. Miyazaki, T. Matsushita, M. Maeda, and K. Ikeda, 'Relationships Between Chemical Structures and Solubility, Diffusivity, and Permselectivity of 1,3-Butadiene and n-Butane in 6FDA-Based Polyimides', J. Polymer Sci., pt B, 37, 2941 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<2941::AID-POLB4>3.0.CO;2-5
  16. S. H. Yeom, Y. S. Chung, W. T. Lee S. I. Kim, and J. H. Kim, 'Preparation and Gas Permeation Properties of Polyimide-Silica Hybrid Membranes', Membrane Journal, 11(3), 116 (2001)
  17. Y. B. Lee, H. B. Park, J. K. Shim, and Y. M. Lee, 'Synthesis and Characterization of Polyamidemide-Branched Siloxane and Its Gas-Separation', J. Appl. Polym. Sci., 74, 965 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991024)74:4<965::AID-APP23>3.0.CO;2-4
  18. R. M. Barrer, 'Permeation, Diffusion and Solution of Gases in Organic Polymers', Trans Faraday Soc., 35, 628 (1939) https://doi.org/10.1039/tf9393500628
  19. W. Jang, D. Kim, S. Choi, YG Shul, and H. Han, 'Synthesis and characterization of sulfonated polyimides containing aliphatic linkages in the main chain', Polym. Int., 55, 1236 (2006) https://doi.org/10.1002/pi.2069