Effect of Light : Nutrients Ratio on the Zooplankton and Phytoplankton Community

동.식물플랑크톤 군집에 미치는 빛 : 영양염 비의 영향

  • Jun, Man-Sig (National Kangwon Development Research Institute) ;
  • Ryu, Kwang-Hyun (Environment of Engineering, Kumoh National Institute of Technology) ;
  • Kim, Moon-Sook (National Kangwon Development Research Institute) ;
  • Park, Ju-Hyun (National Institute of Environmental Research) ;
  • Park, Je-Chul (Environment of Engineering, Kumoh National Institute of Technology)
  • Published : 2009.09.30

Abstract

This study was conducted to identify the influences of light-to-nutrients ratio on the zooplankton and phytoplankton community. Various experiment conditions such as HL (high-light and without zooplankton), HLZ (high-light and with zooplankton), LL (low-light and without zooplankton), and LLZ (low-light and with zooplankton) were adjusted. Changes in biomass of phytoplankton species with the incubation time showed a similar tendency in the continuous cultures, but the change of species composition in the continuous cultures was detected. Cyanophyeeae (Phormidium sp.) seems to be affected by the existence of zooplankton. Also, the predominant species were Chlorophyceae (Staurastrum spp., S. dorsidentiferum, Coelastrum cambricam, Chlorella sp., Krichnerialla sp.) in a high-light environment and Bacillariophyceae (Melosyra granulata, Synedra acus, Fragilaria crotonensis) in a high-light environment. The estimated mean POC concentration (after twenty days) in a high-light environment was two times higher than that for a low-light environment. P : C ratio of seston component in a low-light environment was higher than that for a high-light environment. Changes in biomass of zooplankton species during the incubation time were higher than that for a high-light environment.

본 연구에서는 식물플랑크톤 종조성, 동물플랑크톤 증식 및 먹이망 구조에 미치는 빛 : 영양염 비에 대한 영향을 알아보았다. 실험조건은 빛 에너지의 강약과 동물플랑크톤 유무(약광 LL, 약광+동물플랑크톤 LLZ, 강광: HL, 강광+동물플랑크톤: HLZ)등의 다양한 방법으로 조절하였다. 배양시간에 따른 식물플랑크톤의 총 현존량을 모든 배양조건에서 유사한 경향을 보였으나, 종조성은 배양조건에 따라 차이를 보였다. 녹조류(Staurastrum spp., S. dorsidentiferum, Coelastrum cambricam, Chlorella sp., Krichnerialla sp.)는 강광의 조건에서, 규조류(Melosyra granulata, Synedra acus, Fragilaria arotonensis)는 약광의 조건에서 우점하는 것으로 나타났지만, 남조류(Phormidium sp.)는 포식자에 의한 영향을 크게 받는 것으로 조사되었다. 강광 조건에서의 평균 POC 농도(20일 이후)는 약광의 조건보다 약 2배 높은 농도를 보였다. 반면에 seston의 P/C비는 약광의 조건이 강광의 조건보다 높게 나타났다. 배양시간에 따른 동물플랑크톤의 총 현존량은 강광의 조건이 약광의 조건보다 높게 나타났다.

Keywords

References

  1. APHA. 1992. Standard methods for the examination of water and wastewater, 18th ed .. American Public Health Association, Washington, DC
  2. Bergquist, A.M., S.R Carpenter and J.C. Latino. 1985. Shifts in phytoplankton size structure and community composition during grazing by constrasting zooplankton assemblages. Limnol. Oceanogr. 30: 1037-1045 https://doi.org/10.4319/lo.1985.30.5.1037
  3. Kawabata, K and J. Urabe. 1998. Length-weight relationships of eight freshwater planktonic crustacean species in Japan. Freshwater Biology. 39: 199-206 https://doi.org/10.1046/j.1365-2427.1998.00267.x
  4. Kilham, S.S. 1984. Silicon and phosphorus growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verh. Int. Ver. Limnol. 22: 435-439
  5. Kilham, S.8., D.A. Kreeger, S.G. Lynn, C.E. Goulden and L. Herrera. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiogia 377:147-159 https://doi.org/10.1023/A:1003231628456
  6. Litchman, E. 1998. Population and community responses of phytoplankton to fluctuating light. Oecologia 117:247-257 https://doi.org/10.1007/s004420050655
  7. Litchman, E. and C.A. Klausmeier. 2001. Competition of phytoplankton under fluctuating light. Am. Nat. 157:170-187 https://doi.org/10.1086/318628
  8. Mizuno, T. 1975. Illustrations of the freshwater plankton of Japan (in japanese). Hoikusha Publishing Co., LTD
  9. Porter, KG. 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159-170
  10. Schlesinger, D.A., L.A. Molot and B.J. Shuter. 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Can. J. Fish. Aquat. Sci. 38: 1052-1058 https://doi.org/10.1139/f81-145
  11. Schulz, KL. and RW. Sterner. 1999. Phytoplankton phosphorus limitation and food quality for Bosmina. Limnol. Oceanogr. 44: 1549-1556 https://doi.org/10.4319/lo.1999.44.6.1549
  12. Shuter, B.J. 1978. Size dependence of phosphorus and nitrogen subsistance quotas in unicellular microorganisms. Limnol. Oceanogr. 23: 1248-1255 https://doi.org/10.4319/lo.1978.23.6.1248
  13. Smith, RE.H. and J. Kalff 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol.18: 275-284 https://doi.org/10.1111/j.1529-8817.1982.tb03184.x
  14. Smith, RE.H. and J. Kalff. 1983. Competition for phosphorus among co-occurring freshwater phytoplankton. Limnol. Oceanogr. 28(3): 448-464
  15. Sommer, U. 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch Hydrobiol. 96: 399-416
  16. Sommer, U. 1984. The paradox of the plankton: Fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol. Oceanogr.29(3): 633-636 https://doi.org/10.4319/lo.1984.29.3.0633
  17. Sommer, U. 1986. Phytoplankton competition along a gradient of dilution rates. Oecologia 68: 503-506 https://doi.org/10.1007/BF00378762
  18. Sommer, U. 1992. Phosphorus-limited Daphnia: Intraspecific facilitation instead of competition. Limnol. Oceanogr. 37: 966-973 https://doi.org/10.4319/lo.1992.37.5.0966
  19. Sterner, RW. 1993. Daphnia growth on varying quality of Scenedesmus: Mineral limitation of zooplankton. Ecology 74: 2351-2360 https://doi.org/10.2307/1939587
  20. Sterner, RW., D.D. Hagemeier, W.L. Smith and RF. Smith. 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limnol. Oceanogr. 38(4): 857-871 https://doi.org/10.4319/lo.1993.38.4.0857
  21. Suttle, C.A., J.G. Stockner and P.J. Harrison. 1987. Effects of bnutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Can. J. Fish. Aquat. Sci. 44: 1768-1774 https://doi.org/10.1139/f87-217
  22. Tilman, D. 1977. Resource competition between planktonic algae: an experimental and theoritical approach. Ecology 58: 338-348 https://doi.org/10.2307/1935608
  23. Urabe, J., M. Kyle, W. Makino, T. Yoshida, T. Andersen and J.J. Eser. 2002. Reduced light increases herbivore production due to stoichiometric effets of light: nutrient balance. Ecology 83: 619-627 https://doi.org/10.1890/0012-9658(2002)083[0619:RLIHPD]2.0.CO;2
  24. Urabe, J. and RW. Sterner. 1996. Regulation of herbivore growth by the balance of light and nutrients. Proc. Natl. Acad. Sci. USA, 93: 8465-8469 https://doi.org/10.1073/pnas.93.16.8465
  25. Vanni, M.J. 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624-635 https://doi.org/10.2307/1938467
  26. Wetzel, RG. and G.E. Likens. 1990. Limnological analyses. 2nd edition. Springer-Verlag, New York
  27. Willen, E. 1976. A simplified method of phytoplankton counting. Br. Phycol. J. 11: 265-278 https://doi.org/10.1080/00071617600650551