DOI QR코드

DOI QR Code

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate

Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구

  • 김규식 (안동대학교 신소재공학부 청정소재연구센터) ;
  • 김지식 (경북대학교 상주캠퍼스 신소재공학과) ;
  • 허훈 (한국과학기술원 기계공학) ;
  • 이기안 (안동대학교 신소재공학부)
  • Published : 2009.10.01

Abstract

Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Keywords

References

  1. Joysurya Basu, S Ranganathan, 2003, Bulk Metallic Glasses: A New Class of Engineering Materials., Sadhana, Vol. 28, No. 3-4, pp. 783-798 https://doi.org/10.1007/BF02706459
  2. M. Heilmaier, 2001, Deformation behavior of Zr-based metallic glasses, J. Mater. Process. Technol., Vol. 117, pp. 374-380 https://doi.org/10.1016/S0924-0136(01)00782-8
  3. Jorg F. Loffler, 2003, Bulk Metallic Glass, lntermetallics, Vol. 11, No. 6, pp. 529-540 https://doi.org/10.1016/S0966-9795(03)00046-3
  4. William L Johnson, 1996, Bulk metallic glasses-a new engineering material, Curro Opin. Solid State Mater. Sci., Vol. 1, pp. 383-386 https://doi.org/10.1016/S1359-0286(96)80029-5
  5. H. Tan, Y. Zhang, X. Hu, Y. P. Feng, Y. Li, 2004, Synthesis of in situ bulk glass matrix composite in by Bridgman method, Mater. Sci. Eng. A, Vol. 375-377, pp. 407-410 https://doi.org/10.1016/j.msea.2003.10.206
  6. X. Hu, S. C. Ng, Y. P. Feng, Y. Li, 2003, Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses, Acta Mater., Vol. 51, pp. 561-572 https://doi.org/10.1016/S1359-6454(02)00438-X
  7. L. F. Liu, L. H. Dai, Y. L. Bai, B. C. Wei, J. Eckert, 2005, Behavior of multiple shear band in Zr-based bulk metallic glass, Mater. Chem. Phys., Vol. 93, pp. 174-177 https://doi.org/10.1016/j.matchemphys.2005.03.011
  8. Y. Leng, T. H. Courthney, 1991, Multiple shear band formation in metallic glasses in composites, J. Mater. Sci., Vol. 26, pp. 588-592 https://doi.org/10.1007/BF00588291
  9. Y. K. Xu, J. Xu, 2003, Ceramics partieulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites, Scr, Mater., Vol. 49, pp. 843-848 https://doi.org/10.1016/S1359-6462(03)00447-0
  10. T. G. Nieh, J. Wadsworth, 2006, Homogeneous deformation of bulk metallic glasses, Scr. Mater., Vol. 54, pp. 387-392 https://doi.org/10.1016/j.scriptamat.2005.04.052
  11. Hyung-Seop Shin, Young-Jin Jeong, Jung-Ho Ahn, 2007, Strain rate dependence of deformation behavior in Zr-based bulk metallic glasses in the supercooled liquid region, J. Alloys Compd., Vol. 434-435, pp. 40-43 https://doi.org/10.1016/j.jallcom.2006.08.095
  12. D. G. Lee, Y. G. Kim, S. H. Lee, N. J. Kim, Y. T. Lee, 2005, Quasi-Static and Dynamic Deformation Behavior of Zr-Based Amorphous Alloy and Amorphous Matrix Composite, J. Kor. lnst. Met. Mater., Vol. 43, pp. 589-594
  13. G. Y. Sun, G. Chen, G. L Chen, 2007, Comparison of Microstructures and Properties of Zr-Based Bulk Metallic Glass Composites with Dendritic and Spherical Bee Phase Precipitates, lntermetallics, Vol. 15, No. 5-6, pp. 632-634 https://doi.org/10.1016/j.intermet.2006.10.026
  14. Y. F. Xue, H. N. Cai, L Wang, F. C. Wang, H. F. Zhang, 2008, Effect of Loading Rate on Failure in Zr-based Bulk Metallic Glass, Mater. Sci. Eng. A, Vol. 473, pp. 105-110 https://doi.org/10.1016/j.msea.2007.04.044
  15. A. J. Beaudoin, A. Acharya, S. R. Chen, D. A. Korzekwa, M. G. Stout, 2000, Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals, Acta Mater., Vol. 48, No. 13. pp. 3409-3423 https://doi.org/10.1016/S1359-6454(00)00136-1
  16. Z. Y. Suo, K. Q. Qiu, Q. F. Li, Y. L. Ren, Z. Q. Hu, 2008, Ti-Cu-Ni alloys with high strength and good plasticity, J. Alloys Compd., Vol. 463, pp. 564-568 https://doi.org/10.1016/j.jallcom.2007.09.084
  17. N. H. Tatiq, B. A. Hasan, J. I. Akhter, M. A. Shaikh, 2009, Evolution of Loops in Ductile Zr-Based Bulk Metallic Glass during Plastic Deformation, J. Alloys Compd., Vol. 477, No. 1-2, pp. L8-L10 https://doi.org/10.1016/j.jallcom.2008.10.017

Cited by

  1. Visualization of Crack Propagation and Fracture Transition in Bulk Metallic Glass using Mechano-Luminescence vol.20, pp.4, 2011, https://doi.org/10.5228/KSTP.2011.20.4.303