DOI QR코드

DOI QR Code

Geochemistry and Petrogenesis of Adakitic Granitoids from Bognae Area in the Southwestern Part of the Yeongnam Massif, Korea

영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성

  • Published : 2009.08.31

Abstract

Cretaceous intrusive and extrusive rocks in the southwestern part of the Yeongnam Massif are possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical and petrological study on the granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. The granodiorites distributed around Donggyori in the Bognae area (DGd) are different from other granitic rocks within the study area in the contents and differentiation trends of $Al_2O_3$ and MgO as well as in the contents of the trace elements such as Ba, Sr, Pb, Ni, Cr and Y DGd have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but low Y and Yb contents. The major and trace element contents of the DGd fall well within the adakitic field, whereas other Cretaceous granites in the study area are plotted in the island arc ADR area in Sr/Y vs. Y diagram. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate. The geochemical and tectonic features reveal that adakite-like signatures of the DGd were generated by the interaction of mantle peridotite and subducted slab-derived adakitic melts (caused by the thermal effect of ridge subduction), and which slightly modified by crustal contamination during emplacement.

영남육괴 남서부에 분포하는 백악기 화성암들은 태평양(Pacific)판의 섭입에 의해서 야기된 활발했던 백악기 화성활동의 산물이다. 암석학적 및 지화학적 접근을 통하여 이 지역에 분포하는 화강암류의 성인과 지구조환경을 유추하여 보았다. 연구지역의 화강암류는 칼크-알칼리(calc-alkaline)계열로, 분화에 따른 주성분원소와 미량원소의 변화 경향은 전반적으로 다른 지역의 백악기 화강암류의 분화 경향과 유사하게 나타나지만, 각 암체의 분화경향이나 화학조성을 살펴볼 때 각 암체의 마그마 근원물질은 서로 다른 것으로 사료된다. 복내지역 동교리 부근에 분포하는 화강섬록암(DGd)은 연구지역 내에 분포하는 다른 화강암류와 비교하여 $Al_2O_3$, MgO의 함량 및 분화에 따른 변화 경향이 다르게 나타나며, Ba, Sr, Pb, Ni, Cr, Y등 미량원소의 함량에서 뚜렷한 차이를 보인다. 동교리 화강섬록암(DGd)의 지화학적 특징은 높은 $Al_2O_3$, Sr 함량과 높은 Sr/Y La/Yb 비를 가지며, 낮은 Y과 Yb함량과 같은 슬랩용융(slab-melting)으로 생성된 아다카이트에서 흔히 관찰되는 지화학적 특성을 나타낸다. 주성분 및 미량원소의 함량을 살펴보면 동교리화강섬록암은 아다카이트의 판별도로 가장 널리 이용되는 Sr/Y vs. Y 관계도에서 호상열도형ADR(Island Arc Andesite, Dacite, Rhyolite)영역에 도시되는 다른 백악기 화강암류들과 명확히 구분되어 아다카이트 영역에 잘 도시된다. ANK vs. A/CNK과 지구조판별도에서 화강암류의 모마그마는 I-type의 화산호화강암의 특성을 나타내며, 태평양판의 섭입에 의한 압축장응력이 작용하는 대륙연변부에서 생성된 것으로 해석된다. 지화학적특성 및 지구조적 환경을 종합하면 동교리화강섬록암의 아다카이틱한 특성은 섭입슬랩의 용융(해령 섭입에 의한 열로 생성)에 의하여 생성된 마그마와 맨틀 페리도 타이트와의 상호작용 그리고 상승하는 동안 지각물질과의 동화작용 등 복합적인 과정을 겪었을 것으로 추정된다.

Keywords

References

  1. 김정빈, 김용준, 홍세선, 1990. 담양.진안 사이에 분포하는 엽리상 화강암류에 대한 암석화학적 연구. 대한광상지질학회, 23, 87-104
  2. 김정빈, 박영석, 1996, 벌교지역에 분포하는 심성압류의 압석화학과 지질시대에 관한 연구. 한국지구과학회지, 17, 227-240
  3. 민경덕, 이윤수, 2006, 한반도의 지구조 변화. 대한자원지질학회지, 39, 353-358
  4. 박영석, 김정빈, 윤정한, 안건상, 1997, 고흥지역에 분포하는 백악기 심성압류의 지질시대와 암석화학적 연구. 한국지구과학회지, 18, 70-83
  5. 이상만, 김형식, 1966, 한국지질도(1:50,000) 복내도폭 및 설명서. 국립지질조사소
  6. 이상만, 김상욱, 진명식, 1987, 남한의 백악기-제3기 화성활동과 지구조직의 의의. 지질학회지, 23, 338-359
  7. 위수민, 박세미, 최선규, 유인창, 2005, 한반도 남서부지역에 분포하는 백악기 화강암류에 대한 지화학적 연구. 자원환경지질학회지, 38, 113-127
  8. 위수민, 최선규, 유인창, 신흥자, 2006, 경상분지 서남부에 분포하는 백악기 진동화강암의 지화학적 특성 : 아다카이틱(adakitic)한 특성을 중심으로. 자원환경지질학회지, 39, 555-566
  9. 진명식, 1985, 남한에 분포되어 있는 백악기 화강암류의 화학조성과 조구조적 환경에 대하여. 대한지질학회지, 21, 67-73
  10. 진명식, 신홍자, 권석기, 2005, 한반도의 화성활동과 화성암. 한국지질자원연구원, 대전, 310 p
  11. Atherton, M.P. and Petford, N., 1993, Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362, 144-146 https://doi.org/10.1038/362144a0
  12. Calmus, T., Aguilln-Robles, A., Maury, RC., Bellon, H., Benoit, M., Cotten, J, Bourgois, J, and Michaud, F., 2003, Spatial and temporal evolution of basalts and magnesian andesites ('bajaites') from Baja California, Mexico: the role of slab melts. Lithos, 66, 77-105 https://doi.org/10.1016/S0024-4937(02)00214-1
  13. Castillo, P.R., Janney, P.E., and Solidum, RU., 1999, Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134, 33-51 https://doi.org/10.1007/s004100050467
  14. Cheong, C.S., Kwon, S.T., and Sagong, H., 2002, Geochemical and Sr-Nd-Pb isotopic investigation of Traiassic granitoids and basement rocks in the northern Gueongsang basin, Korea: Implications for the young basement in the East Asian continental margin. The Island Arc, 11, 25-44 https://doi.org/10.1046/j.1440-1738.2002.00356.x
  15. Choi, S.G, Ryu, I.C., Pak, S.J., Wee, S.M., Kim, C.S., and Park, M.E., 2005, Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geology Reviews, 26, 115-135 https://doi.org/10.1016/j.oregeorev.2004.10.005
  16. Condie, K.C., 1973, Archean magmatism and crustal thickening. Geological Society of America Bulletin, 84, 2981-2992 https://doi.org/10.1130/0016-7606(1973)84<2981:AMACT>2.0.CO;2
  17. Cullers, R.L. and Graf, lL., 1984, Rare earth elements in igneous rocks of the continental crust: Intermediate and Silicic rocks-ore petrogenesis. In Henderson, P. (ed), Rare earth elements geochemistry. Elsevier Science Publishing Company, NY, USA, 275-316
  18. Defant, M.J. and Drummond, M.S., 1990, Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665 https://doi.org/10.1038/347662a0
  19. Defant, M.J. and Kepezhinskas, P.K., 2001, Evidence suggests slab melting in arc magmas. EOS (Transactions, American Geophysical Union), 82, 65-69 https://doi.org/10.1029/01EO00038
  20. Drummond, M.S. and Defant, M.J., 1990, A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modem comparisons. Journal of Geophysical Research, 95, 21503-21521 https://doi.org/10.1029/JB095iB13p21503
  21. Drummond, M.S., Defant, M.J., and Kepezhinskas, P.K., 1996, Petrogenesis of slab-derived trondhjemite-tonalitedacite/adakite magmas. Transactions of the Royal Society Edinburgh: Earth Sciences, 87, 205-215 https://doi.org/10.1130/0-8137-2315-9.205
  22. F$\"{o}$rster, H.J., Tischendorf, G, and Trumbull, R.B., 1997, An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, 40, 261-293 https://doi.org/10.1016/S0024-4937(97)00032-7
  23. Gao, S., Rudnick, R., Yuan H.L., Liu, X.M., Liu, Y.S., Xu, WL., Ling, W.L., Ayers, J, Wang, X.C., and Wang, Q.H., 2004, Recycling lower continental crust in the North China craton. Nature, 432, 892-897 https://doi.org/10.1038/432432a
  24. Guo, F., Fan, W, and Li, C., 2006, Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens. Geological Magazine, 143, 1-13 https://doi.org/10.1017/S0016756805001214
  25. Jin, M.S., 1988, Geochemistry of the Cretaceous to Early Tertiary Granitic Rocks in Southern Korea Pt. II. Trace Elements Geochemistry. The Joumal of Geological Society Korea, 24, 168-188
  26. Kamei, A., 2004, An adakitic pluton on Kyushu Island, southwest Japan arc. Journal of Asian Earth Sciences, 24, 43-58 https://doi.org/10.1016/j.jseaes.2003.07.001
  27. Kay, RW, 1978, Aleutian magnesian andesites; melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4, 117-132 https://doi.org/10.1016/0377-0273(78)90032-X
  28. Kiji, M., Ozawa, H., and Murata, M., 2000, Cretaceous adakitic Tamba granitoids in northern Kyoto, San'yo belt, southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 29, 136-149 https://doi.org/10.2465/gkk.29.136
  29. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643 https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  30. Martin, H., 1999, Adakitic magmas: Modem analogues of Archaean granitoids. Lithos, 46, 411-429 https://doi.org/10.1016/S0024-4937(98)00076-0
  31. Martin, H. and Moyen, IF., 2002, Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology, 30, 319-322 https://doi.org/10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2
  32. Martin, H., Smithies, RH., Rapp, R, Moyen, IF., and Champion, D., 2005, An overview of adakite, tonalitetrondhjemite- granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1-24 https://doi.org/10.1016/j.lithos.2004.04.048
  33. McCulloch, M.T. and Gamble, lA., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374 https://doi.org/10.1016/0012-821X(91)90029-H
  34. Pearce, JA., Harris, N.B.W., and Tindle, A.G, 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983 https://doi.org/10.1093/petrology/25.4.956
  35. Qu, X.M., Hou, Z.Q., and Li, YG, 2004, Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74, 131-148 https://doi.org/10.1016/j.lithos.2004.01.003
  36. Rapp, R.P., Shimizu, N., Norman, MD., and Applegate, GS., 1999, Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160, 335-356 https://doi.org/10.1016/S0009-2541(99)00106-0
  37. Sajona, F.G, Bellon, H., Maury, RC., Pubellier, M., Quebral, R.D., Cotten, l, Bayon, F.E., Pagado, E., and Pamatian, P., 1997, Tertiary and Quaternary magmatism in Mindanao and Leyte (Philippines): Geochronology, geochemistry and tectonic setting. Journal of Asian Earth Sciences, 15, 121-153 https://doi.org/10.1016/S0743-9547(97)00002-0
  38. Smithies, RH., 2000, The Archean tonalite-trondhjemitegranodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182, 115-125 https://doi.org/10.1016/S0012-821X(00)00236-3
  39. Streckeisen, A., 1976, To each plutonic rock its proper name. Earth Science Review, 12, 1-33 https://doi.org/10.1016/0012-8252(76)90052-0
  40. Sun, S.S. and McDonough, W.E, 1989, Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In Saunders, A.D. (ed), Magmatism in the ocean basins. Geological Society Special Publication, 42, Geological Society, London, UK, 313-345
  41. Turek, A. and Kim, C.B., 1996, Advances in U-Pb zircon geochronology of Mesozoic plutionism in the southwestern part of Ryengnam Massif. Geochemical Journal, 30, 323-338 https://doi.org/10.2343/geochemj.30.323
  42. Wang, Q., Xu, J.E, Jian, P., Zhao, Z.H., Bao, Z.W., Xu, w., and Xiong, X.L., 2004, Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38, 417-434 https://doi.org/10.2343/geochemj.38.417
  43. Wang, Q., XU, lE, Jian, P., Bao, Z.W., Zhao, Z.H., Li, C.F., Xiong, x.L., and Ma, lL., 2006, Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47, 119-144 https://doi.org/10.1093/petrology/egi070
  44. Xiong, X.L., Li, x.H., Xu, lE, Li, W.x., Zhao, Z.H., Wang, Q., and Chen, X.M., 2003, Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37, 233-252 https://doi.org/10.2343/geochemj.37.233
  45. Xu, J.E, Shinjo, R, Defant, MJ., Wang, Q., and Rapp, RP., 2002, Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geological Society of America, 30, 1111-1114 https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

Cited by

  1. Cretaceous to Early Tertiary Granites and Magma Mixing in South Korea : Their Spatio-temporal Variations and Tectonic Implications (Multiple Slab Window Model) vol.21, pp.2, 2012, https://doi.org/10.7854/JPSK.2012.21.2.203
  2. Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea vol.34, pp.4, 2013, https://doi.org/10.5467/JKESS.2013.34.4.313
  3. Double injection events of mafic magma into supersolidus Yucheon granites to produce two types of mafic enclaves in the Cretaceous Gyeongsang Basin, SE Korea vol.108, pp.2, 2014, https://doi.org/10.1007/s00710-013-0296-0
  4. The Cretaceous Turn of Geological Evolution: Key Evidence from East Asia vol.92, pp.5, 2018, https://doi.org/10.1111/1755-6724.13691