DOI QR코드

DOI QR Code

지각된 위험이 스마트 의류 속성에 미치는 영향 연구 -한국, 스페인, 미국 비교 연구-

The Influences of Perceived Risk on Attributes of Smart Clothing -Comparison among Korea, Spain, and U.S.-

  • 고은주 (연세대학교 의류환경학과) ;
  • ;
  • 이창한 (연세대학교 의류환경학과) ;
  • 윤혜림 (연세대학교 의류환경학과)
  • Ko, Eun-Ju (Dept. of Clothing & Textiles, Yonsei University) ;
  • Okazaki, Shintaro (College of Economics & Business Administration, Autonomous University of Madrid) ;
  • Lee, Chang-Han (Dept. of Clothing & Textiles, Yonsei University) ;
  • Yun, Hye-Lim (Dept. of Clothing & Textiles, Yonsei University)
  • 발행 : 2009.06.30

초록

스마트 의류는 섬유 및 의류 산업, 전자 산업의 미래를 상징하는 것으로, 전자 기기들을 일생생활의 일부로 만들기 위한 노력이 지속적으로 진행되고 있다. 기술 혁신이나 스마트 의류의 적용에 관한 선행연구들이 진행되어 왔으나, 스마트 의류에 대한 인지나 태도에 대한 소비자 연구는 거의 없는 실정이다. 따라서 이 연구에서는 소비자들이 스마트 의류 수용 속성에 대하여 지각된 위험이 어떠한 영향을 미치는지를 파악하고자 개념적 연구모형을 제시하였다. 또한 한국, 미국, 스페인간의 연구모형을 비교 분석하였다. 자료 분석을 위하여 Amos 7.0을 이용하였으며 그 연구결과는 다음과 같다. 첫째, 한국, 미국 스페인 모두에서 심리적 위험이 영향을 미치는 것으로 나타났다. 심리적 위험은 상대적 이점과 복잡성에 부정적인 영향을 미쳤으나, 사용용이성에는 긍정적인 영향을 미쳤다. 둘째, 손실 위험은 상대적 이점에 유의한 영향을 미치지 않는 것으로 나타났다. 하지만 손실 위험은 한국 소비자들의 복잡성에 부정적인 영향을 미치는 것으로 나타났으며, 한국과 미국 소비자들의 사용용이성에는 긍정적인 영향을 미쳤다. 셋째, 성과 위험의 영향은 국가별 소비자에 따라 다른 것으로 나타났다. 연구결과를 바탕으로 스마트 의류 관련 마케팅 전략에 필요한 정보와 시사점을 제공하였다.

Smart clothing represents the future of both the textile/clothing industry and electronic industry and has an effort to make electronic devices a genuine part of our daily life. The researches about technologies innovation and application of smart clothing can be found in previous studies. But consumer researches about perception or attitude toward smart clothing can be hardly found. Therefore, we proposed a conceptual framework that explores the impact of perceived risks on perceived attributes to adopt smart clothing. In addition, we compared differences of this framework among three counties. Korea, U.S. and Spain. Based on the literature review and hypotheses development, a research model was constructed. After data analysis using Amos 7.0, the results can be concluded as following: First, the influences of psychological risk among Korea, U.S. and Spain are same. Psychological risk has negative effect on relative advantage and complexity, but has positive effect on trialability. Second, loss risk was found to have nothing to do with relative advantage. But it negatively influences complexity for Korean consumers and positively influences trialability for both Korean and American consumers. Third, the influences of performance risk for different consumers are different. At last, based on our discussion, some implications were also concluded.

키워드

참고문헌

  1. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411−423 https://doi.org/10.1037/0033-2909.103.3.411
  2. Ariyatum, B., & Holland, R. (2003). A strategic approach to new product development in smart clothing. Journal of the Asian Design International conference, 1, 70
  3. Bauer, R. A. (1960). Consumer behavior as risk taking. Proceedings of the Educators Conference, American Marketing Association, 389-398
  4. Black, N. J., Lockett, A., Winklhofer, H., & Ennew, C. (2001). The adoption of internet financial services: A qualitative study. International Journal of Retail & Distribution Management, 29(8), 390−398 https://doi.org/10.1108/09590550110397033
  5. Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley & Sons
  6. Chen, R., & He, F. (2003). Examination of brand knowledge, perceived risk and consumers' intention to adopt an online retailer. TQM & Business Excellence, 14(6), 657−693
  7. Chung, K. H., & Oh, J. S. (2001). Testing the SERVQUAL scale and perceived risk in internet. Journal of Global Academy of Marketing Science, 11, 1−21
  8. Conchar, M. P., Zinkhan, G. M., Peters, C., & Olavarrieta, S. (2004). An integrated framework for the conceptualization of consumers' perceived-risk processing. Journal of the Academy of Marketing Science, 32(4), 418−436 https://doi.org/10.1177/0092070304267551
  9. Cox, D. F. (1967). Risk handling in consumer behavior: An intensive study of two cases. In D. F. Cox (Ed.), Risk taking and information handling in consumer behavior (pp. 34-81). Boston: Harvard University Press
  10. Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perception in internet shopping. Journal of Business Research, 56(11), 867−875 https://doi.org/10.1016/S0148-2963(01)00273-9
  11. Hamilton, G. (2007). Product attributes and data feed marketing. Mercent.com. Retrieved May 1, 2007, from http://blog.mercent.com/posts/product_attributes/
  12. Hirunyawipada, T., & Paswan, A. K. (2006). Consumer innovativeness and perceived risk: Implications for high technology product adoption. Journal of Consumer Marketing, 23(4), 182-198 https://doi.org/10.1108/07363760610674310
  13. Holak, S. L., & Lehmann, D. R. (1990). Purchase intention and the dimensions of innovation: An exploratory model. Journal of Product Innovation Management, 7, 59−73 https://doi.org/10.1016/0737-6782(90)90032-A
  14. Huh, K. (2004). The effect of perceived risks on the consumer satisfaction in the use of cellular phone. Journal of Global Academy of Marketing Science, 11, 1−24
  15. Kim, J., & Shin, Y. (2000). Factors influencing the consumers' perceived risks and purchase intention in the cyber shopping mall. Journal of Global Academy of Marketing Science, 6, 1−21 https://doi.org/10.1080/12297119.2000.9707395
  16. Ko, E., Sung, H., & Yoon, H. (2008). The effect of attributes of innovation and perceived risk on product attitude and intention to adopt smart wear. Journal of Global Academy of Marketing Science, 18(2), 89−112 https://doi.org/10.1080/12297119.2008.9707246
  17. Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132−158 https://doi.org/10.1086/259131
  18. Lattin, J. M., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate data. London: Thomson
  19. Littrell, M. A., & Miller, N. J. (2001). Marketing across cultures: Consumers perceptions of product complexity, familiarity, and compatibility. Journal of Global Marketing, 15(1), 67−86 https://doi.org/10.1300/J042v15n01_05
  20. Mann, S. (1997). Smart clothing: The wearable computer and wearCam. Personal and Ubiquitous Computing, 1(4), 218−224
  21. Marzano, S. (2000). The quest for power, comfort and freedom. In S. Marzano, J. Green, C. Heerden, & J. Mama (Eds.), New nomads: An exploration of wearable electronics by philips (pp. 4-9). Rotterdam: 010 Publishers
  22. Mieres, C. G., Martin, A. M. D., & Gutierrez, J. A. T. (2006). Influence of perceived risk on store brand proneness. International Journal of Retail & Distribution Management, 34(10), 761−772 https://doi.org/10.1108/09590550610691347
  23. Mitchell, V. W., Favies, F., Moutinho, L., & Vassos, V. (1999). Using neural networks to understand service risk in the holiday product. Journal of Business Research, 46(2), 167-180 https://doi.org/10.1016/S0148-2963(98)00020-4
  24. Mitchell, V. W., & Harris, G. (2005). The importance of consumers' perceived risk in retail strategy. European Journal of Marketing, 39(7/8), 821−837 https://doi.org/10.1108/03090560510601789
  25. Mowen, J. C., & Minor, M. S. (2001). Consumer behavior: A framework. Englewood Cliffs: Prentice-Hall
  26. Ostund, L. E. (1974). Perceived innovation attributes as predictors of innovativeness. Journal of Consumer Research, 1(2), 23−29 https://doi.org/10.1086/208587
  27. Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: The marketing problem and its solutions. Journal of Consumer Research, 6(2), 5−14
  28. Robert, N. S., & Kjell, G. (1993). Perceived risk: Further considerations for the marketing discipline. European Journal of Marketing, 27(3), 39−50 https://doi.org/10.1108/03090569310026637
  29. Rogers, E. M. (1983). The diffusion of innovations. New York: Free Press
  30. Rogers, E. M. (1995). Diffusion of innovations (5th ed.). New York: Free Press
  31. Shin, B. S., & Park, J. Y. (2006). The effect of the consumer's perceived risk on level of information search. Journal of Global Academy of Marketing Science, 16(3), 143−167 https://doi.org/10.1080/12297119.2006.9707375
  32. Sung, H., & Jeon, Y. (2005). A study on Korean golfers' sun protective behavior and their intention to buy UV-protective clothing. Journal of the Korean Society of Clothing and Textiles, 29(1), 189−197
  33. Sung, H., & Slocum, A. (2004). Golfer's intention to adopt UV specialize clothing as innovation based on Rogers theory. Journal of the Korean Society of Clothing and Textiles, 28(12), 1554−1561
  34. Taylor, J. (1974). The role of risk in consumer behavior. Journal of Marketing, 39, 54−60
  35. Textile & Fashion Korea (2007). Smart clothes: A new challenge for the textile industry. Korea Federation of Textile Industries, March, 40−43
  36. Ziamou, P. (2002). Commercializing new technologies: Consumers' response to a new interface. Journal of Product Innovation Management, 19(5), 365−374 https://doi.org/10.1016/S0737-6782(02)00153-4
  37. Zinkhan, G. M., & Karande, K. W. (1991). Cultural and gender differences in risk-taking behavior among American and Spanish decision-makers. Journal of Social Psychology, 131(5), 741−742 https://doi.org/10.1080/00224545.1991.9924657

피인용 문헌

  1. The Effects of Fashion Innovativeness and Style-Innovation Attributes of Fashion Adoption vol.33, pp.10, 2009, https://doi.org/10.5850/JKSCT.2009.33.10.1564
  2. Effectiveness of the Smart Healthcare Glove System for Elderly Persons with Hypertension vol.23, pp.3, 2013, https://doi.org/10.1002/hfm.20361