FAST AND AUTOMATIC INPAINTING OF BINARY IMAGES USING A PHASE-FIELD MODEL

  • Received : 2009.06.26
  • Accepted : 2009.09.14
  • Published : 2009.09.25

Abstract

Image inpainting is the process of reconstructing lost or deteriorated parts of images using information from surrounding areas. We propose a computationally efficient and fast phase-field method which uses automatic switching parameter, adaptive time step, and automatic stopping of calculation. The algorithm is based on an energy functional. We demonstrate the performance of our new method and compare it with a previous method.

Keywords

References

  1. M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, Proc. of SIGGRAPH 2000, New Orleans, USA 2000.
  2. A. Bertozzi, S. Esedoglu, and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Proc., 16 (2007), 285-291. https://doi.org/10.1109/TIP.2006.887728
  3. A. Bertozzi, S. Esedoglu, and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for image inpainting, Multiscale Modeling and Simulation, 6 (2007), 913-936. https://doi.org/10.1137/060660631
  4. M. Burger, L. He, and C. Schoenlieb, Cahn-Hilliard inpainting and a generalization for grayvalue images, UCLA CAM report 08-41, 2008.
  5. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. https://doi.org/10.1063/1.1744102
  6. T. F. Chan and J. Shen, Mathematical models for local non-texture inpaintings, SIAM J. Appl. Math., 62 (2001), 1019-1043.
  7. D. J. Eyre, http://www.math.utah.edu/»eyre/research/methods/stable.ps.
  8. D. J. Eyre, in Computational and mathematical models of microstructural evolution, The Material Research Society, Warrendale, PA, (1998), 39-46.
  9. E. V. L. Mello and O. T. S. Filho, Numerical study of the Cahn-Hilliard equation in one, two and three dimensions, Physica A, 347 (2005), 429-443. https://doi.org/10.1016/j.physa.2004.08.076
  10. U. Trottenberg, C. Oosterlee, and A. Schuller, MULTIGRID, Academic press, 2001.