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APPROXIMATION OF QUADRIC SURFACES USING SPLINES
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ABSTRACT. In this paper we present an approximation method of quadric surface using quar-
tic spline. Our method is based on the approximation of quadratic rational Bézier patch using
quartic Bézier patch. We show that our approximation method yields G1 (tangent plane) con-
tinuous quartic spline surface. We illustrate our results by the approximation of helicoid-like
surface.

1. INTRODUCTION

Approximations of conic section and quadric surface by Bézier curve and surface are im-
portant tasks in CAGD (Computer Aided Geometric Design) or CAD/CAM. In the recent
twenty years, many works on the approximation of conic section including circular arc or
quadric surface by Bézier curve or surface with high order approximation have been developed
[1, 6, 7, 8, 17, 19, 20, 22].

In particular, Fang presented the quintic Bézier curve approximation of circular arc[10]
and of conic section[11], and presented rational quartic representation for conic sections[12].
Floater found the approximation of conic section by quadratic Bézier curve[14] and Bézier
curve of odd degree n with error bound analysis[15], and presented the approximation of ratio-
nal curve by Bézier curve having the optimal approximation order 2n[16]. Recently, Ahn has
presented the quartic Bézier curve approximation of conic section with error bound analysis[3].

In this paper we present an approximation method of quadric surface using quartic spline
using the approximation method in [3]. We find the necessary and sufficient condition that the
quartic approximate spline is G1 (tangent plane) continuous. We also obtain the error bound of
our approximation method using the error analysis in [15].

In §2, we present the method of the quartic spline approximation of the quadric surface, and
find the some properties of our approximation method. In §3, we illustrate our assertions by
some examples.
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2. APPROXIMATION METHOD OF QUADRIC SURFACE USING QUARTIC BÉZIER SURFACE

In this section we present an approximation method of quadric spline by the G1 quartic
spline. Quadric spline consists of quadratic rational Bézier patches, and the quadratic rational
Bézier patch is the extension of quadratic rational Bézier curves to two variables, which is also
called by conic section. Conic section is represented in the standard rational quadratic Bézier
form

r(t) =
p0B

2
0(t) + p1wB

2
1(t) + p2B

2
2(t)

B2
0(t) + wB2

1(t) +B2
2(t)

, t ∈ [0, 1]

where p0, p1, p2 ∈ ℝ3 are the control points, w > 0 is the weight associated with p1, and
Bn

i (t) is the Bernstein polynomial of degree n given by

Bn
i (t) =

n!

i!(n− i)!
ti(1− t)n−i, t ∈ [0, 1].

(Refer to [5, 13, 15].) Also the quadratic rational Bézier patch R(t, s) has the representation
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, t, s ∈ [0, 1] (2.1)

where pij , (0 ≤ i, j ≤ 2) are control points, and wij are weights. In this paper we assume that
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Quartic spline consists of quartic Bézier patches. The quartic Bézier patch S(t, s) can be
expressed by

S(t, s) =
4∑

i=0

4∑

j=0

bijB
4
i (t)B

4
j (s), t, s ∈ [0, 1]

where bij , 0 ≤ i, j ≤ 4, are the control points, and bij also called control net of S(t, s).
Actually, the quartic Bézier approximation method for given quadratic rational Bézier patch
means looking for the control net bij for the given control points pij and weights wij .

Recently, we found an approximation method of conic section by quartic Bézier curve in
[3]. In the method, for given conic section r(t) having the control points pi, i = 0, 1, 2, and
weight w, the quartic Bézier approximation b(t) =

∑4
i=0B

4
i (t)bi has the control points

b0 = p0

b1 = (1− ®)p0 + ®p1

b2 =
1− ¯
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b3 = ®p1 + (1− ®)p2

b4 = p2



APPROXIMATION OF QUADRIC SURFACES USING SPLINES 219

where

® =
2w

w + 1
− 3

4
¯

¯ =
2(w2 − w + 2 + 2(w − 1)

√
w + 1)

3w(w + 1)
.

Also, we had the error bound analysis[3],

dH(b, r) ≤ E4(w)∣p0 − 2p1 + p2∣ (2.4)

where

E4(w) =
1

28
max

(
1

w2
, 1

) ∣w − 1∣3(w + 2− 2
√
w + 1)2

w2(w + 1)

for 0 < w < 7+
√
17

2 ≈ 5.562.
Now, we construct the quartic Bézier surface approximation of quadratic rational Bézier

surface. Let R(t, s) be given quadratic rational Bézier patch as in Equation (2.1). We use the
quartic Bézier curve approximation method[3] of conic section as two variables case. Thus we
have the matrix form of the quartic Bézier curve approximation in Equation (2.3)

(b0, ⋅ ⋅ ⋅ ,b4)
T = Aw(p0,p1,p2)

T (2.5)

or equivalently, (b0, ⋅ ⋅ ⋅ ,b4) = (p0,p1,p2)A
T
w, where Aw is 5× 3 matrix

Aw =

⎛
⎜⎜⎜⎜⎝

1 0 0
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1−¯
2 ¯ 1−¯

2
0 ® 1− ®
0 0 1
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.

Finally, we present the quartic Bézier surface approximation

S(t, s) =
4∑

i=0

4∑

j=0

bijBi(t)Bj(s)

where the control net bij is

(bij)
j=0,⋅⋅⋅ ,4
i=0,⋅⋅⋅ ,4 = Aw1(pij)

j=0,1,2
i=0,1,2A

T
w2
.

As an example, we plot the quadratic rational Bézier patch and its quartic Bézier approximation
in Figure 1. For more detailed description, we define the intermediate surface H(t, s) as the
quartic Bézier curve approximation of R(t, s) in view point of the variable s. Then

H(t, s) =

4∑

j=0

∑
hijwi0B

2
i (t)∑

wi0B2
i (t)

Bj(s) (2.6)

where the control points (hi0, ⋅ ⋅ ⋅ ,hi4)
T = Aw2(pi0,pi1,pi2)

T for i = 0, 1, 2, or equivalently,

(hi0, ⋅ ⋅ ⋅ ,hi4) = (pi0,pi1,pi2)A
T
w2
. (2.7)
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FIGURE 1. (a) The quadratic rational Bézier patch having the control net
(pij)

j=0,1,2
i=0,1,2 . (b) The quartic approximate Bézier patch having (bij)

j=0,⋅⋅⋅ ,4
i=0,⋅⋅⋅ ,4 .

The boundary curves of both surface are plotted by thick lines.

H(t, s) is the conic section in direction of t and quartic Bézier curve in direction of s. Also,
S(t, s) is obtained as the quartic Bézier curve approximation of H(t, s) in view point of the
variable t. Thus (b0j , ⋅ ⋅ ⋅ ,b4j)

T = Aw1(h0j ,h1j ,h2j)
T for j = 0, ⋅ ⋅ ⋅ , 4.

We will find a sufficient condition that our approximation method yields G1 continuous
quartic Bézier surface. Let Rl(t, s) and Rr(t, s) be two consecutive quadratic rational Bézier
patches with common boundary curve Rl(1, s) = Rr(0, s), s ∈ [0, 1]. Let pl

ij and pr
ij be the

control points of Rl(t, s) and Rr(t, s), respectively. Clearly, pl
2j = pr

0j , j = 0, 1, 2. If the two
patches satisfy

pl
1jp

l
2j = ¸pr

0jp
r
1j , (j = 0, 1, 2) (2.8)

wl
1 = wr

1, wl
2 = wr

2

for some constant ¸ > 0, then our approximation method yields G1 continuous quartic spline.

Proposition 2.1. If any consecutive quadratic rational Bézier patches satisfy Equation (2.8) on
their common boundary, then our approximation method yields G1 continuous quartic spline.

Proof. Let Sl(t, s) and Sr(t, s) be the quartic Bézier surface approximations of Rl(t, s) and
Rr(t, s), respectively, with common boundary curve Sl(1, s) = Sr(0, s), s ∈ [0, 1]. To show
that they are G1 continuous at the common boundary, it is sufficient[13, 18, 21] to show that
bl
3jb

l
4j = ¸br

0jb
r
1j , (j = 0, ⋅ ⋅ ⋅ , 4), where bl

ij and br
ij are the control nets of Sl and Sr,

respectively.
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Let hl
ij and hr

ij , (i = 0, 1, 2 and j = 0, ⋅ ⋅ ⋅ , 4), be the control net of intermediate surfaces Hl

and Hr, respectively. Since wl
2 = wr

2, we obtain Awl
2
= Awr

2
and hl

2j = hr
0j for j = 0, ⋅ ⋅ ⋅ , 4.

Let Aw2 = (aij)
j=0,1,2
i=0,⋅⋅⋅ ,4.

By Equation (2.7), for i = 0, 1, 2 and j = 0, ⋅ ⋅ ⋅ , 4, hij =
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For i = 0, ⋅ ⋅ ⋅ , 4 and j = 0, ⋅ ⋅ ⋅ , 4, bij =
∑2
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Since a40−a30 = a12−a02 = 0, a41−a31 = a10−a00 = −® and a42−a32 = a11−a01 = ®,
we have

bl
3jb

l
4j = ®(hl

2j − hl
1j) = ®hl

1jh
l
2j

br
0jb

r
1j = ®(hr

1j − hr
0j) = ®hr

0jh
r
1j

By Equation (2.9) we finally have
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l
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r
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□
Corollary 2.2. If we use this approximation method for a quadric surface, then the G1 conti-
nuity at the boundary is automatically achieved.

We also present the error analysis of our approximation method as the following proposition.
Under the assumption Equation (2.2), the proof of the following proposition can be obtained
by the similar way in that of Theorem 4.2 in Floater[15] for odd degree. Thus we omit the
proof.

Proposition 2.3. For given quadric surface R(t, s), the quartic Bézier surface approximation
S(t, s) has the error bound

dH(R,S) ≤ E4(w2) max
i=0,1,2

∣pi0 − 2pi1 + pi2∣+E4(w1) max
j=0,1,2

∣p0j − 2p1j + p2j ∣,

where dH(R,S) is the Hausdorff distance between two surfaces R and S. (For more knowl-
edge of the Hausdorff distance refer to [4, 9, 15].)
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Proof. See Theorem 4.2 in Floater[15]. □

3. EXAMPLES AND COMMENTS

In this section we apply our approximation method to two examples. One is to approximate
the quadratic rational Bézier patch by quartic Bézier surface. Let R(t, s) be the quadratic
rational Bézier patch with the control points

(pij) =

⎛
⎝

(0, 5, ¼2 − 1) (0, 6, ¼2 − 1) (0, 6, ¼2 )
(−5, 5, 3¼4 − 1) (−6, 6, 3¼4 − 1) (−6, 6, 3¼4 )
(−5, 0, ¼ − 1) (−6, 0, ¼ − 1) (−6, 0, ¼)

⎞
⎠

and w1 = w2 = 1/
√
2, as shown in Figure 1(a). Using our approximation method, the quartic

Bézier surface S(t, s) is obtained as shown in Figure 1(b), and Proposition 2.2 yields the upper
bound of error

dH(R,S) ≤ E4(
1√
2
)× (6

√
2 +

√
3) ≈ 2.08× 10−5.

The other is to approximate the helix-like surface by quartic spline. The helix-like surface
was constructed by the quadratic rational spline such as in [2]. The quadratic rational spline
satisfies the condition in (2.8) with ¸ = 1 and w0 = w1 = 1√

2
. As shown in Figure 2(a),

the quadratic rational spline consists of 4 × 2 quadratic rational Bézier patches. Using our
approximation method, we have the quartic spline consisting of 4 × 2 quartic Bézier patches
as shown in Figure 2(b). On each common boundaries between consecutive quartic Bézier
patches, they are G1 continuous. Thus the quartic Bézier spline is an G1 approximation of the
quadric spline.

Our approximation method can be also applied to approximate spheres and torii. It is easy
to see that the approximate quartic splines of these surface are also G1 continuous and have
very small upper bounds of error.
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