References
- N. Aspert, Non-linear subdivision of univariate signals and discrete surfaces, EPFL thesis, (2003).
- N. Cavaretta, W. Dahmen and C. Micchelli, Stationary Subdivision, Memoirs of the AMS., (1991).
- G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989), 49-68. https://doi.org/10.1007/BF01889598
- S. Dubuc, Intepolation through an iterative scheme, J.Math.Anal and Appl. 114 (1986), 185-204. https://doi.org/10.1016/0022-247X(86)90077-6
- N. Dyn, Subdivision schemes in computer aided geometric design, Advances in Numerical Analysis, Subdivision algorithms and radial functions,W.A.Light (ed.), Oxford University Press, (1992), 36-104.
- M. Hassan, Multiresolution in Geometric Modelling: Subdivision Mark Points and Ternary Subdivision, Ph.D Thesis, Computer Laboratory, University of Cambridge, (2005).
-
M. Hassan, I. Ivrissimitzis, N. Dodgson and M. Sabin, An Interpolating 4-point
$C^2$ ternary stationary subdivision scheme, CAGD 19(1) (2002), 1-18. - K. P. Ko, B. G. Lee and G. J. Yoon, A study on the mask of interpolatory symmetric subdivision schemes, Applied Mathematics and Computations, 187 (2007), 609-621. https://doi.org/10.1016/j.amc.2006.08.089
- K. P. Ko, B. G. Lee and G. J. Yoon, A ternary four-point approximating subdivision scheme, Applied Mathematics and Computation, 190 (2007), 1563-1573. https://doi.org/10.1016/j.amc.2007.02.032
- K. P. Ko, B. G. Lee and G. J. Yoon, A (2n+4)-point symmetric subdivision scheme with two parameters, preprint.