References
- Y. J. Ahn. 2001. Conic Approximation of planar curves. Comp. Aided Desi. 33(12): 867-872. https://doi.org/10.1016/S0010-4485(00)00110-X
- Y. J. Ahn. 2003. Degree reduction of Bezier curves with Ck-continuity using Jacobi polynomials. Comp. Aided Geom. Desi. 20: 423–434. https://doi.org/10.1016/S0167-8396(03)00082-7
- Y. J. Ahn. 2003. Degree reduction of Bezier curves using constrained Chebyshev polynomials of second kind. ANZIAM J. 45: 195–205. https://doi.org/10.1017/S1446181100013262
- Y. J. Ahn. 2005. Helix approximation with conic and quadratic Bezier curves. Comp. Aided Geom. Desi. 22(6): 551-565. https://doi.org/10.1016/j.cagd.2005.02.003
- Y. J. Ahn, H. O. Kim. 1997. Approximation of circular arcs by Bezier curves. J. Comp. Appl. Math. 81: 145-163. https://doi.org/10.1016/S0377-0427(97)00037-X
- Y. J. Ahn, H. O. Kim. 1998. Curvatures of the quadratic rational Bezier curves. Comp. Math. Appl. 36(9):71–83. https://doi.org/10.1016/S0898-1221(98)00193-X
-
Y. J. Ahn, H. O. Kim, K. Y. Lee. 1998.
$G^1$ arc spline approximation of quadratic Bezier curves. Comp. Aided Desi. 30(8):615-620. https://doi.org/10.1016/S0010-4485(98)00016-5 - Y.J. Ahn, Y. S. Kim, Y. S. Shin. 2004. Approximation of circular arcs and offset curves by Bezier curves of high degree. J. Comp. Appl. Math. 167, 181–191.
- B. Bastl, B. Juttler, J. Kosinka, M. Lavcka. 2008. Computing exact rational offsets of quadratic triangular Bezier surface patches Comp. Aided Desi. 40: 197-209. https://doi.org/10.1016/j.cad.2007.10.008
- M. G. Cox, P. M. Harris. 1990. The approximation of a composite Bezier cubic curve by a composite Bezier quadratic curve. IMA J. Nume. Anal. 11:159–180.
- E. F. Eisele. 1994. Chebychev approximation of plane curves by splines. J. Appr. Theo. 76:133–148. https://doi.org/10.1006/jath.1994.1010
- G. Elber, I.K. Lee, M.S. Kim. 1997. Comparing offset curve approximation method. IEEE comp. grap. appl. 17(3): 62–71.
- G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan-Kaufmann, San Francisco, 2002.
- R. T. Farouki, T. W. Sederberg. 1995. Analysis of the offset to a parabola. Comp. Aided Geom. Desi. 12(6): 639-645. https://doi.org/10.1016/0167-8396(94)00038-T
- R. T. Farouki, J. Hass. 2007. Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions. J. Comp. Appl. Math. 209: 246-266. https://doi.org/10.1016/j.cam.2006.11.006
- M. Floater. 1995. High-order approximation of conic sections by quadratic splines. Comp. Aided Geom. Desi. 12(6): 617-637. https://doi.org/10.1016/0167-8396(94)00037-S
-
M. Floater. 1997. An
$O(h^{2n})$ Hermite approximation for conic sectoins. Comp. Aided Geom. Desi. 14:135-151. https://doi.org/10.1016/S0167-8396(96)00025-8 - T. F. Hain, A. L. Ahmad, S. Venkat, R. Racherla, D. D. Langan. 2005. Fast, precise flattening of cubic Bezier path and offset curves. Comp. Grap. 29(5): 656–666. https://doi.org/10.1016/j.cag.2005.08.002
- S. H. Kim and Y. J. Ahn. 2007. Approximation of circular arcs by quartic Bezier curves. Comp. Aided Desi. 39(6): 490-493. https://doi.org/10.1016/j.cad.2007.01.004
- I.K. Lee, M.S. Kim, and G. Elber. 1996. Planar curve offset based on circle approximation. Comp. Aided Desi. 28:617–630. https://doi.org/10.1016/0010-4485(95)00078-X
- W. Lu. 1992. Rational offsets by reparametrizations. preprint.
- R. W. D. Nickalls. 1993. A new approach to solving the cubic: Cardan's solution revealed. Math. Gaze. 77: 354–359. https://doi.org/10.2307/3619777
- M. Peternell. 2009. Rational two-parameter families of spheres and rational offset surfaces. J. Symb. Comp. to appear.
- J. Sanchez-Reyes. 2007. Offset-rational sinusoidal spirals in Bezier form. Comp. Aided Geom. Desi. 24(3): 142-150. https://doi.org/10.1016/j.cagd.2007.01.001
- H. Y. Zhao, G. J. Wang. 2007. Error analysis of reparametrization based approaches for curve offsetting. Comp. Aided Desi. 39: 142-148. https://doi.org/10.1016/j.cad.2006.11.004