Investigation on the Side Effects of Denormalizing
Corporate Databases

Sangwon Lee” - Namgyu Kim™ - Songchun Moon™"

Abstract

Corporate databases are usually denormalized, due to the data modelers™ impetuous belief that de-
normalization could improve system performance. By providing a logical insight into dencrmalization, this
paper attempts to prevent every database modeler from falling into the denormalization pit. We indicate
loopholes in the denormalization advocates™ assertions, and then present four criteria to analyze the use-
fulness and validity of denormalization; 1) the level of concurrency among transactions, 2) the database
independence of the application program, 3) the independence between the logical design and the phys-
ical one, and 4) the overhead cost to maintain database integrity under various query patterns. This pa-
per also includes experimental results to evaluate performance of denormalized and fully normalized
structures under various workloads.

Keywords : Denormalization, Logical Database Design, Normal Forms, Performance Tuning, Relational
Model

Received : 2009. 06. 03 Final Acceptance : 2009. 06. 15.
* Ph.D Candidate, KAIST Business School

** Corresponding Author, Assistant Professor, School of Business IT, Kookmin University, e-mail : ngkim@kookmin.ac.kr
“* Professor, KAIST Business School

136 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

While gaining experience in database con—
sulting with a number of enterprises, we have
been astonished that the extent of data re-
dundancy comes to as much as 65 per cent in
terms of attributes, rather than entities and re-
lationships in most enterprises [Date, 1998 :
Moon, 2003 : Sanders, 2001]. The overhead cost
of handling unnecessary redundant data could
be large if the enterprise manages considerable
data. Replication of certain attributes, allowed
as foreign keys, could be regarded as excép—
tional necessary redundancy, because their pres-
ence is inevitable for lossless joins. However,
this type of redundancy occupies only a rela-
tively small portion of dataset. A large percent-
age of data redundancy is unnecessary, and
lowers data quality [Wang, 1995].

Are there ways to design databases effi-
ciently and economically reducing unnecessary
redundancy? Of course, yes. Normalization
[Codd, 1972 : Codd, 1974] certainly not only con-
tributes to lower unnecessary data redundancy,
but also improves data integrity. From the con-
ceptual view point, normalization is simply a
process to eliminate unnecessary redundancy
by abstracting only semantically relevant data
to be incorporated in the same table. The virtue
of normalization could be appreciated in verify-
ing the semantics of knowledge inappropriately
caught in the conceptual design phases, rather
than a compulsory procedure carried out in log-
ical modeling, that follows on from conceptual
modeling. Theoretically, cautious mapping of a
conceptual model to a logical model should yield

fully normalized tables [Pascal, 2000]. It is only
when poor design has bundled muitiple entity
types into single tables that those tables must
undergo an explicit process of normalization. A
fully normalized structure ensures every table
contains minimal data redundancy. In that
structure, update operations on data are per—
formed on only one table, except when foreign
keys are used. Accordingly, it could guarantee
data integrity by preventing some tables from
holding mutually different states of the database.

Even kthough normalization contributes to
improvement of data consistency, some practi-
tioners, however, insist that it may deteriorate
the performance from the standpoint of re-
sponse time [Avison, 2003]. Their assertion is
as follows. Higher levels of normalization in-
crease the number of tables in the database, re-
quiring more joins for data manipulation. Since
a join is one of the most important factors that
could delay response, more normalized tables
may lead to the performance deterioration. Thus,
it is asserted that denormalization could im-
prove performance [Bolloju, 1997 : Date, 2003 :
Janas, 1995 : Tupper, 1998], although denorm-
alization runs counter to normalization theory.
Denormalization is a series of process that re-
stores tables to where they were before nor-
malization to improve performance. This asser-
tion involves much risk that could deteriorate
overall performance. Denormalization to elevate
piecemeal performance is a rough workaround,
not a systematic methodology [Schkolnick,
1980] for data design.

e Example 1(Risk of Denormalization) :

Voll6 No.2

Investigation on the Side Effects of Denormalizing Corporate Databases 137

We now demonstrate the risk of denorm-
alization using an example that aids our
conceptual understanding. Imagine food
preparation in a large restaurant. In gen-
eral, flavorings, such as sugar, pepper, and
salt, are stored in flavoring boxes. Likewise,
vegetables are stored with other vegeta-
bles, and meat is stored together flesh.
When cooked, ingredients are selected
from each repository and used for a cui-
sine as user views in database systems.
Assume that a chef prepares an inter-
mediate-stage food, forecasting many or-
ders for beef pilaf. If he takes orders for
beef pilaf, as they arise, he could cook
them faster than otherwise is the case.
Assume at one stage his manager informs
him that beef supplied today is insanitary.
The cook must replace the existing beef
with new ones from the freezer. He must
determine all his part-processed dishes
that were pre-prepared for data integrity.
In the meantime, if he has a rush of orders
for new dishes beyond his forecast, he
would comply with orders more slowly
than others who did not pre-prepare the
food, that is, who classified ingredients,
exhibiting application independency. A wise
cook would choose the following method
instead of mixing original ingredients for
the intermediate-stage dishes in advance.
He could find out information more quickly
using labeling for frequently used in-
gredients as data indexing.

End of Example 1 l

Building queries dependent on logical schema
may damage the independence between the ap-
plication program and database system, be-
cause the schema must be modified if the usage
patterns of the application program are changed.
We are able to infer the risk of denormalization
through the simple example above. The mecha-
nism that combines several tables for queries
that are expected to occur frequently must, in-
evitably, incur overhead to maintain integrity
when updating data. If performance matters,
you should retain the original normalized tables
and use efficient widely used indexing and
clustering techniques in the physical design
phase. To conclude, the proposition that de-
normalization could elevate performance is
caused by mistaking logical modeling for phys-
ical modeling [Bock, 2002]. That is to say, the
system performance could be enhanced, not at
the logical design phase, but at physical design.
At the logical level, we must normalize to elim-
mnate unnecessary redundancy and maintain
integrity. Conversely, at the physical level, we
must handle performance requests to focus on
query analysis and access pattern analysis us-
ing indexing or clustering. Reduce your preju-
dice in denormalization [Wang, 1995]; it could
be recognized, not as a key solution, but as a
desperate measure. Denormalization rarely im-

proves system information performance.

2. Research QOverview

Although denormalization is utilized in vari-
ous types of database design, it hitherto lacks
solid principles and guidelines. Shokolnick and

138 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Sorenson introduced denormalization [Pascal,
20021, but insufficiently justify its use. They
stressed the need for semantic constraints in
the denormalization process that are meaningful
as a new concept from an academic viewpoint,
Although trials for the denormalization process
attempt to face the one issue that lacks solid
principles and guidelines in denormalization,
denormalization still lacks concrete, A trial for
a model of the denormalization process was in-
troduced with a stipulated policy that the data-
base designer should, prior to the denormaliza~
tion procedure, develop a logical entity relation-
ship model that describes the cardinality for
each relationship or volume estimation for each
entity and defines process decomposition for
the application via a dataflow diagram. The da-
tabase design cycle with denormalization starts
from the conceptual data model and ends in
mapping it to physical schema <Figure 1>.
That model considers many criteria for de-
normalization; it handles performance require-

{ Develop conceptual data model with ER diagrsmj

{ Do normalization }

1

{ Map conceptual scheme to physical scheme }

<Figure 1) Database design phases including denormalization

ments needed for the business and other con-
siderations. The performance requirements in—
clude application performance and on-line re-
sponse time. Other considerations include mini-
mum number of data access paths, minimum
amount of storage, transaction frequency, up-
date or query transaction, future application de-
velopment, maintenance consideration, volatility
of application requirements, and so forth.
Though that approach does not restrict the
data modeler’s intuition, it represents an effort
to systematically categorize denormalization.
The first trial to categorize denormalization fo-
cused on how the data will be used. The at-
tempt to assert denormalization should be con-
sidered carefully by a data modeler and it is de-
pendent upon one’s subjectivity. Another cate-
gorization of denormalization was structured by
steps such as adding redundant columns, col-
lapsing tables, splitting tables, and derived data
[Pascal, 2002). There are four denormalization
strategies <Figure 2>. Denormalization was
introduced at the logical or base relation level.
To validate the logical model, denormalization
with ERD is carried out. At the time when the
structure with logical objects is transformed to
physical ones, denormalization decreases the
number of logical objects. It could shorten ap-
plication call paths navigating the database
objects. When the structure of physical model
is changed, denormalization creates, moves, and
consolidates entities or attributes using of re-
dundancy or synthetic keys. Denormalization
was introduced at the physical storage, not at
the logical or base relation level. Denormaliza-
tion was regarded as an intermediate step be-

Vol16 No.2

Investigation on the Side Effects of Denormalizing Corporate Databases 139

tween the logical level and the physical one.
The pre-physical design process performs the
logical database refinement process with a

practical view.

| Adding Redundant Columns |

i Collapsing Tables | 4%

g SplittingTablei“:;

Derived Attributes

(Figure 2> Four strategies of denormalization

Unreasonable denormalization could ruin a
logical design in that it does not reflect future
additional development and maintenance. One
of strong points of denormalization is that a
more denormalized data model could provide
better performance in extending the data model.
Especially when a data modeler designs a mul-
tidimensional structure, one could solve the
complexity of hierarchies by means of facts and
dimensions. A data modeler could also navigate
the data structure with a more intuitive view.
Since there is the trade—off between normal-
ization and denormalization, a data modeler
must give careful consideration to denormaliza-
tion and use it only in the specific situations in
which two entities have a one-to-one relation—
ship and a many-to-many relationship with
non-key attributes. In the meantime, an alter-
native to denormalization, clustering, was in-
troduced. Clustering could be useful for in-
formation system analysis and design in ob-
ject-oriented techniques, but it accepts only
specific type of physical data structure.

3. Fallacious Doctrine-Denormalization
for Performance Enhancement

Taking a comprise attitude for denormaliza-
tion, the data modeler should have both appro-
priate knowledge about application require-
ments and expertise in the business in carrying
out the refinement process. He or she should
pay attention to optimal performance being
aware of flexibility requirements; the database
management system, operating system, and
data update frequency. In this section, we pro-
vide some logical reasoning to indicate loop~
holes in the assertion of denormalization advo-
cates. We will show a general example for de-
normalization (Example 2). The table structure
in Example 2 will be used for consistent and

logical expansion.

¢ Example 2(Denormalization Case) : Let
us assume that following business rules
are valid for a simple application.

Rule 1 : A student can have one or more
aars and a car can belong to only
one student.

Rule 2 : A student con have one alma mater.

The fully normalized schema for this ap-
plication results in three tables <Iigure
3>. In the system organized as in <Figure
3>, assume there is a frequently used
query, “Select cars that belong to the stu-
dent whose name is XXX.” It is necessary
to join two tables, Student and Car to ex-
ecute this query. The Car_Student table in

140 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

<Figure 4> is created by composing two
tables, Student and Car, using denormali-
zation. We would expect that the response
time in <Figure 4> is shorter than that in
<Figure 3>, are the retrieval gets the re-
sult from only one table without a join.
End of Example 2 W

3.1 Transaction Concurrency Degradation

It is often the case that semantically sepa-
rated transactions cannot be performed con-
currently in a denormalized structure, even
though they can be done in a fully normalized

structure. For concurrency control, most sys-
tems use a locking mechanism in which trans-
actions acquire or release locks on records.
However, with huge tables created by denorm-
alization, transaction acquires more data locks
on a larger scale than is necessary. This could
result in declining concurrency. Example 3
shows that denormalization would decrease
system performance, due to unnecessary block-
ing of concurrent execution of semantically ir-
relative transactions.

¢ Example 3 (Performance Degradation
Resulted from Unnecessary Locks on

Student
S_ID Name Phone Alma_Master
1000 Michael 111-1111 U-Alpha
1001 John 222-2222 U-Beta Car
1002 Peter 333-3333 U-Beta Car_ID Maker_ID - Mileage
0001 GM 30,000 1000
School 0002 Toyota 40,000 1000
School 1D Grade Location 0003 Samsung 50,000 1000
U-Alpha A North 0004 GM 40,000 1001
U-Beta B South 0005 Samsung 50,000 1002

(Figure 3> Fully normalized table structure

Car_Student

Car 1D Maker_ID Mileage Phone Alma_Master
0001 GM 30,000 1000 Michael 111-1111 U-Alpha
0002 Toyota 40,000 1000 Michael 111-1111 U-Alpha
0003 Samsung 50,000 1000 Michael 111-1111 U-Alpha
0004 GM 40,000 1001 John 222-2222 U-Beta
0005 Samsung 50,000 1002 Peter 333-3333 U-Beta

School

School ID Grade Location

U-Alpha A North
U-Beta B South

<Figure 4> Denormalization comprising two tables

Vol.16 No.2

Investigation on the Side Effects of Denomalizing Comporate Dalabases 141

Data) : Recall <Figure 3> One trans-
action T-Student updates the student’s
phone number; the other, T-Car, updates
the car mileage. They are performed con-
currently, because they access the phone
number and mileage stored in separated
tables. It is intuitively suitable that these
two semantically separated transactions
are performed concurrently. However, in
<Figure 4>, execution of 7-Car is not al-
lowed if it tries to access the car with
“Car_ID = 0001” if another transaction T-
Student already holds an update lock on
record whose “S_ID = Michael.”

End of Example 3 l

3.2 Data Independence Infringement

The proposition that denormalization is car-
ried out based on access pattern analysis is
equal to abandoning well-balanced perform-
ance, because the proposition infringes in-
dependence between the application program
and database. Advocates of denormalization in-
sist that correct and detailed analysis for access
pattern should be the prerequisite to improve
system performance, whilst data integrity is
guaranteed. The schema at the logical level
may be changed according to the application
programs or usage types. Unfortunately, this
proposition infringes independence between the
application program and database, one of the
most important principles of database systems.
When a new application program is developed
due to a changing business environment, or

when user access patterns are changed, the ap~

plication—dependent table structure should be
changed according to the application program.

o Example 4(Degree of Data Independ-
ence Infringement) : Recall Example 2.
The structure in <Figure 4> is obtained
by denormalizing the structure in <Figure
3> with the expectation that the query,
“Select cars that belong to the student
whose name is XXX,” would be frequently
issued. Contrary to expectations, however,
assume that the query, “Update the phone
of student with S_ID is 1000,” is performed
frequently due to the changed business
environment. This change may degrade
overall performance, because of overhead
for integrity maintenance. Now, let us as-
sume another type of change. In general,
frequently—accessed tables are changed
while retrieval operations still occur more
frequently than update ones. Assume the
structure in <Figure 3>, in which there is
a frequently issued query, “What is the
grade of school in which the student
named XXX graduated?” To reply to this
query, from the viewpoint of denormaliza-
tion, a join between two tables, Student
and School, is needed. This results in the
structure shown in <Figure 5>
Conversely, assume that this query is per-
formed in the denormalized structure
<Figure 4>. In this case, the information
about student name is stored in the table,
Car_Student. Therefore, to reply to this
query, the join between two tables, Car_
Student and School is needed; this results

142

JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

in <Figure 6>. Since the joined table in
<Figure 6> is larger than the one in
<Figure 5>, it is axiomatic that its re-
sponse time is longer. Thus, even though
denormalization is performed cautiously
through access pattern analysis on the
present program, the alteration of the ap~
plication program or access pattern could
affect overall performance.

End of Example 4 Il

3.3 Boundary Wreck between Logical Model
and Physical Model

Advocates for denormalization who confuse

Student_School

the logical design phase with the physical one
in data modeling would be the last to perceive
and use performance improvement correctly.
This could degrade system performance even
more. There has been so much research on im-
provement of performance in the physical de-
sign phase; this is known as tuning. There are
two representative methods. Indexing manages
pointers for frequently accessed data. Cluster-
ing stores semantically related tables in an ad-
jacent place. If we reluctantly accept that per-
formance improvement could be achieved by
artificially manipulating a fully normalized struc-
ture, it does not imply the existing normalized
tables are designed incorrectly, but that nor-

Name Phone Alma_Master Grade Location
1000 Michael 111-1111 U-Alpha A North
1001 John 222-2222 U-Beta B South
1002 Peter 333-3333 U-Beta B South
Car
06001 GM 30,000 1000
0002 Toyota 40,000 1000
0003 Samsung 50,000 1000
0004 GM 40,000 1001
0005 Samsung 50,000 1002

Figure 5) Joined tables from fully normalized structure

Car_Student_School
Car_ID

Maker_ID

Alileage

Name

Phone

Alma_Master

Grade

l.ocation

0001 GM 30,000 1000 Michael 111-1111 U-Alpha A North
0002 Toyota 40,000 1000 Michaet 111-111% U-Alpha North
6003 Samsung 50,000 1000 Michael 111-1111 U-Alpha A North
0004 GM 40,000 1061 John 222-2222 U-Beta B South
0005 Samsung 56,000 1002 Peter 333-3333 U-Beta B South

(Figure 6> Joined table from denormalized structure

Vol.16 No.2

Investigation on the Side Effects of Denormalizing Corporate Databases 143

malized structure could be improved by tuning
in the physical design phase.

Even though performance tuning is executed
at the physical design phase, it is not necessary
to recount that the logical modeling must have
the fully normalized table structure without any
contamination. The three precedent phases of
the physical design are requirement analysis,
conceptual modeling, and logical modeling.
Nevertheless, deliverables of the three design
phases, le., requirement specifications, con-
ceptual enterprise model, and tables, do not ex-
ist solely to implement the final physical data
base. They play their own roles as tools to
communicate and exchange information in the
relevant phase. Let us recall the previous
example. In <Figure 3>, Car table has S_ID as
a role of foreign key. However, no one will add
S_ID to “Car” entity as an attribute on its en-
tity relationship model, since S_ID is obviously
not an intrinsic attribute owned by the entity
“Car.” Let us assume that someone adds an at-
tribute S_ID to entity “Car” to the entity rela-
tionship model by guessing that it will be added
in the Car table as a foreign key from the view-
point of necessary redundancy. Few database
modelers clearly understand this situation. A
similar relationship exists between the logical
and physical model. The goal of the logical
model should be to create normalized tables
based on several dependencies such as func-
tional dependency, multi-valued dependency,
and join dependency. All the effort to improve
performance using indexing and clustering are
applicable only to physical modeling. We must
forbid incompetent database modelers from

confusing logical and physical modeling, by
embracing denormalization that should be only

the part of the tuning process.

34 Increased Overheads Cost to Maintain Data
Integrity

Even though decreasing the number of phys—
ical tables could decrease the delay caused by
a join, to decrease the number of tables in-
creases unnecessary data redundancy and gives
rise to a maintenance cost for integrity. If any
data in tables are modified, other tables having
the same or redundant data must be modified
at the same time. This process is compulsory
to maintain the integrity of data; it is guaran-
teed by triggers among related items. The hig-
her the degree of unnecessary data redundancy,
the higher the maintenance cost is to build
triggers. The next example helps understand
this phenomenon (Example 5).

e Example 5 (Performance Degradation
Resulted from Data Redundancy) :
Recall Example 1. A denormalized struc-
ture in <Figure 4> is optimized for the
query such as “Select cars that belong to
the student whose name is XXX.” Howe-
ver, we should consider integrity main-
tenance. Assume that the query “Update
the phone of student with S_ID = 1000” is
issued. In the case of <Figure 3>, we need
to update just one tuple in 3 rows and 4
columns table, Student. Conversely, we
must update three tuples for S_ID = 1000 in
5 rows and 7 columns table Car_Student,

144 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

in the case of <Figure 4>. That is, if the
update query is performed more frequently
than the retrieval one, the denormalized
structure degrades overall performance,
because redundant data increases the de-
lay time for integrity maintenance.

End of Example 5 M

In contrast to compromising response time
for the sake of performance, data integrity must
be observed at all cost. Hence, even advocates
of denormalization should weight data integrity
over system performance. Rather, they advise
that denormalization should be carried out only
in the system where retrieval is expected to be
executed more frequently than an update.
However, research on practical business mat-

ters reveals that in average more than 50 per-

DeptCode
DeptName:
MgrName

Dept_Phone

cent of queries are update. Based on this ob-
servation, we assert that practitioners seldom
gain from denormalization.

4. Experiment for Performance
Evaluation

Even though, for retrieval queries, the re-
sponse time in the denormalized database would
be shorter than that in normalized database, it
is common that, for update queries, the re-
sponse time in the denormalized database is
longer that that in the normalized database.
Denormalization has proposed various techni-
ques and methods to improve performance.
Many system designers have used it in design-
ing enterprise databases to decrease query re-
sponse time. However, frequently designer's

ode
ProduciName

CategoryCode

ExFactPrice

StopDate

EmpiD
EmpNameKr
EmpNameEn
DeptCode
Ssn
Birth
Graduate ! N
Major Order
Dogree OrderCode
JoinDate ProductCode
Position EmpID
Post SupCode
Address OrderType
Phone WarehouseCode
E-mail OrderDate

ShipDate
Price
Amount
TaxType
OCRate

WarehouseCode

1

ProductCode
Date
Reason
Amount
SupCode
Place Suphame
N 1 Condition
Retumn Category
RepName
RepSsn
RepPhons
FrameCode N 1
Stock
ConsPrice StockCode
StartDate WarehouseCode
ProductCode
StockDate
StockAmount
StockTyps
ShipCode EmplD
ProductCode
EmplD
ShipDate
Shipvolume
ShipAmount WarshouseCode

WarehouseName
N Division
Location
Phone
Paost
Address

CFigure 7> Normalized ERD for sales information system

Vol16 No.2

Investigation on the Side Effects of Denormalizing Corporate Databases 145

advocate denormalization over normalization on
the basis of their experience; in contrast to their
expectation to improve application program per-
formance, focusing on decreasing the response
time for retrieval queries, ignores update quer-
ies to the detriment of the overall system.
From the viewpoint of update queries, as well
as refrieval ones, the normalized model is supe-
rior in the general enterprise environment. By
an experiment, we support the fact that de-
normalization does not contribute to perform-
ance improvement. In this section, we summa-
rize the experimental results in [Roh, 2004] to
support our assertion. The experiment used a
normalized model <Figure 7> for a defined
sales information system and then designed its
denormalized one to compare system perfor-
mance. The denormalization was performed by
row-column conversion and column duplication.
We used the server system Samsung SENS
640, MS Windows XP Server as the operating
system, and MS SQL Server 2000 Enterprise
Edition as the database management system.
The denormalized database could have per-
formed better than normalized one, when there
are only retrieval queries. However, the per-
formance of denormalization is lower than that
of normalization in general when there are both
update and retrieval queries. Especially, many
users can lead to frequent locking which results
in dramatic deterioration of system performance.

4.1 Average Response Time

System performance is affected by the data-
base volume as the subject of queries and gen-

erally increases as its database volume in-
creases. System performance meanwhile differs
according to the efficiency of the designed data
model. We observed the average response time
with changing the number of records in two
database models; one designed by normal-
ization, the other by denormalization <Figure
8>. In this experiment, we varied the number
of records from 1,000 to 10,000. When we con-
sider the difference between the performance of
real-world servers and that of the server used
in this experiment, 10,000 records would be ap-
propriate scale for about 100,000 records in re-
al-world. The average response time increases
linearly in the two models as the number of re-
cords increases. Though the normalized data-
base includes joins on queries, its average re-
sponse time is short. This is due to the rela-
tively small size of tables; hence, the fields for
the joins reside in main memory in the normal-
ized database. The steep increase of the aver-
age response time in the denormalized database
is related to the real-time synchronization for
data integrity. In this experiment, some table
triggers are used for data integrity, so that re-
dundant columns may be real-timely synch-
ronized. Thus, as the total number of records
increases, the records changed by triggers
increase. This could degrade performance of all
the systems. Even though triggers affect the
experimental result, they should be sanctioned
by usage in most experiments. Apart from the
effects of triggers, from the viewpoint of the
average response time, as the scale of the data-
base increases, the denormalized database sure-
ly raises concerns for system performance.

146 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

—+— Normalization

enormalization

Response Time

O O N O L O QQ
FFEFLEFIF IS
Number of Records

<Figure 8) Average response time

4.2 Response Time for Tables Joined

One of the most important factors in denorm-
alization is to reduce of joins for system per-
formance. We observed the average response
time against changing the number of tables
joined in the normalized database and the de-
normalized one <Figure 9>. To reduce the oc-
casions of conditional joins, the denormalized
tables include all the columns that would be
created by conditional joins. In the denor-
malized database, the average response time is
not affected by the number of conditional joins
since additional table joins do not occur. In the
normalized database, the system response time
however incrementally increases as the number
of tables joined conditionally increases. The re-
sponse time in retrieving data without the ini-
tial conditional joins requires only 0.47 seconds,
and yet the response time in retrieving data
with five tables joined conditionally increases to
176 seconds. Since the increase in response
time for four tables joined is at least 1.29 sec-
onds, the average response time for one table
joined is as short as 0.32 second. The instanta-
neous and so then negligible time, (.32 second,

for one table joined, however, is slightly af-
fected by the increase of number of records. This
is due to the increased time for physical disk
access for conditional joins, which is insignifi-

cant.

~~o— Normmalization

~#-- Denormalization

Response Time

1 2 3 4 5
Number of Tables

{Figure 9> Response time for tables joined

4.3 Response Time for Read-Write Ratio

We observed the average response time ac-
cording to query type in the normalized and de-
normalized database models <Figure 10>. We
changed the ratio of write queries to read quer-
ies from 0 percent to 100 percent in the two da-
tabase models. The average response time in
the denormalized database is less than in the
normalized database, when the ratio of write
queries to read queries is in the neighborhood
of 0 percent. In contrast, as the ratio of write
queries to read queries increases, the average
response time in the normalized database is
longer than that in the denormalized database.
This result shows that, although the de-
normalized database is more efficient in read
queries than the normalized one, it is less effi-
cient in write queries than the normalized one,
since additional conditional joins are needed in

input queries. The additional conditional joins

Vol.16 No.2

Investigation on the Side Effects of Denormalizing Corporate Databases 147

are compulsory in input queries to fill the val-
ues of redundant data that tend to decrease the
number of conditional joins in read queries. The
performance of the system is influenced by the
real-time synchronization operations for re-
dundant columns, table triggers, which are used
for data integrity in denormalization. Denor-
malization could be useful in the special sit-
uation of information systems where read quer-
ies are in the majority. Nevertheless, normal-
ization could be useful in most information sys-
tems where the number of write queries is
greater than that of read queries, or where the
read queries and the write ones are used to-

gether for online transactions.

—+— Normalization
—#-— Denormalization

Response Time

0 10 20 30 40 50 60 70 80 90 100
Read-Write Ratio

{Figure 10> Response time for read-write ratio

4.4 Response Time for Number of Queries per
Minute

We observed the average response time based
on the number of queries per minute <Figure
11>. The ratio of read and write queries is one
to one. As the number of queries increases, the
average response time in the denormalized data-
base increases steeper than that in the normal-

ized database, because the average response

time of write queries in the denormalized data-
base is longer than that in the normalized
database. It could be due to the increase in the
number of queries leads to the increase of con-

current transactions and then increases locking.

—o— Normalization

—#-- Denormalization

Response Time

0 5 10 15 20 25 30 35 40 45 50
Number of Queries per Minute

(Figure 11> Response time for number of queries per minute

45 Locks for Number of Queries per Minute

The occurrence of locks can be used as an
auxiliary measure of system performance, be-
cause it delays transaction operations and then
lowers system performance. We observed the
number of locks accord'ingy to the number of
queries per minute <Figure 12>. The number
of locks in the denormalized database increases
more than that in the normalized one, due to the
relatively slow process of write queries in the
denormalized database and the increase in the
possibility that additional locks occur. The sys-
tem performance, ie., the average response
time, is intimately associated with the occur-
rence of locks. The occurrence of locks is in in-
verse proportion to the system performance. As
the number of queries or system users in-
creases, the number of locks also lowers sys-

tem performance.

148 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

—#— Normalization
—#-- Denormalization

Locks

0 5 10 15 20 25 3¢ 35 40 45 SO
Number of Queries per Minute

(Figure 12> Locks for number of queries per minute

5. Conclusions

Denormalization in this manner cripples en-
terprise data by ignoring data integrity. We
hope that database modelers and end users do
not fall into the fallacious argument that de-
normalization always improves system per-
formance. In this article, we provide some logi-
cal reasoning to indicate loopholes in the asser-
tions of denormalization advocates. First, de-
normalization lowers concurrency among trans-
actions, because the record size usually in-
creases In denormalized structures. Second, de—
normalization based on query pattern analysis
infringes independence between the application
program and database. Third, mentioning per-
formance issues in the logical design phase
makes unsophisticated database modelers con-
fuse logical and physical modeling. Finally, in—
creased overheads to maintain data integrity e
deteriorates overall system performance when
update queries are frequently issued.

However, the experiment in this paper has
some limitations as follows. In our experiment,
we used a small data set containing only 10,000

records. When we consider the difference be-
tween the performance of real-world servers
and that of the server used in this experiment,
10,000 records would be appropriate scale for
about 100,000 records in real~world. However,
we need to perform intensive experiments not
on a small data set but on a real~world data-
base to investigate various phenomena which
occurs in commercial large-scale database
systems.

References

[1] Avison, D. E. and Fitzgerald, G., “Where
now for development methodologies?”, Com~
munications of ACM, Vol. 46, No. 1, 2003,
pp. 78-82.

[2] Bock, D. B. and Schrage, J. F., “Denormal—-
ization guidelines for base and transaction
tables”, ACM Specidl Interest Group on
Computer Science Education, Vol. 34, No.
4, 2002, pp. 129-133.

[3] Bolloju, N. and Toraskar, K., “Data clus-
tering for effective mapping of object
modelings to relational models”, Journal of
Database Management, Vol. 8, No. 4, 1997,
pp. 16-23.

[4] Codd, E., Relational completeness of data
base sublanguages, Data Base Systems,
Englewood Cliffs, NJ, USA, 1972.

{5] Codd, E., Recent investigations in rela-
tional data base systems, In Proceedings
o International Federation for Infor-
mation Processing Congress, Stockholm,
Sweden, 1974, pp. 15-20.

[6] Date, C. J., Normalization is no panacea,

Vol16 No.2

Investigation on the Side Effects of Denormalizing Comporate Databases 149

Database Programming and Design Online,
Web site : http://www.dbpd.com, 1998,

[7] Date, C. J. and Codd, E. F., “A tribute and
personal memoir”, SIGMOD Record, Vol.
32, No. 4, 2003, pp. 4-13.

[8] Janas, J. M., A systematic approach to da-
tahase denormalization, In Proceedings of
the 17th International Conference on
Information Technology Interfaces, Pula,
Croatia, 1995, pp. 323-328.

[9] Moon, S., “Unclassified data is merely
garbage : data modeling is more crucial
than programming”, Hitech Information,
Vol. 14, No. 9, 2003, pp. 50-51.

[10] Pascal, F., Practical Issues in Database
Management, Massachusetts : Addison-
Wesley, 2000.

[11] Pascal, F., The dangerous illusion : de-
normalization, performance and integrity,
Part 1, DM Review Magazine, Web site :
http://www.dmreview.com, 2002.

[12] Roh, B. U., Inadequacy of denormalization

in data modeling, Master’s Thesis, Korea
Advanced Institute of Science and Tech-
nology, 2004.

[13] Sanders, G. L. and Shin, S., “Denormal-
ization effects on performance of RDBMS”,
In Proceedings of the 34th Hawaii Inter-
national Conference on System Sciences,
2001, pp. 1-9.

[14] Schkolnick, M. and Sorenson, P., “Denor-
malization : a performance oriented data—
base design technique”, In Proceedings of
International Association for the Analog
Computation, 1980, pp. 363~377.

[15] Tooper, C.,, “The physics of logical model-
ing”, Database Programming and Design,
Vol. 11, No. 9, 1998.

[16] Wang, R. Y., Storey, V. C,, and Firth, C.
P, “A framework for analysis of data
quality research”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 7,
No. 7, 1995, pp. 623-640.

150 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Author Profile

Sangwon Lee

Sangwon Lee received the B.S.
degree in Mathematics from
Hanyang University, Korea in
1995 and M.B.A. degree in
Management Information Sys-
tems from Korea Advanced Institute of Science
and Technology (KAIST) in 2002. He is a PhD.
candidate in Management Engineering of KAIST,
His current research interests include enterprise
data modeling and data mining for enterprise in-
formation systems.

Namgyu Kim

Namgyu Kim received the B.S.
degree in Computer Engineer-
ing from Seoul National Univ-
ersity in 1998 and Ph.D. degree
in Management Engineering

® o] =22 2009 06% 03Y HFsiof 1%

from Korea Advanced Institute of Science and
Technology (KAIST) in 2007. He has been work-
ing for Kookmin University since then. His cur-
rent research interests include enterprise data
modeling and data mining.

Songchun Moon

Songchun Moon received his
PhD. degree in Computer Scie-
nce from the University of
hinois at Urbana—Champaign in
1935. He has been working for Korea Advanced
Institute of Science and Technology (KAIST)
since then. He has developed a multi-user rela-

tional database management system, IM, which
is the first prototype in Korea in 1990 and a dis—
tributed database management system, DIME,
first ever in Korea in 1992, His research interests
include enterprise data modeling, security, pri-

vacy, piracy, and data warehousing.

THE A 2000 068 152 AMEH RSt

