식물자원의 양성자 빔 조사에 대한 라디칼 소거능활성의 민감도

Proton Beam Sensitivity of Radical Scavenging Activity from Plant Resources

  • 발행 : 2009.09.30

초록

식물 20종을 메탄올로 추출하여 양성자 빔 조사 에너지양(1, 5, 10 KGray)에 따른 항산화 활성 능을 탐색 하고자 DPPH 라디칼 소거활성과 ABTS free 라디칼 소거 활성에 대하여 조사하였다. 양성자 빔 조사 시 15종류는 활성이 증가하였으나 10 KGray에서 흑축(Pharbitis nil Choisy)은 활성이 감소하였으며, 4종류는 활성변화가 없었다. DPPH 라디칼 소거활성은 1 및 5 KGray에서 유근피(Ulmus macrocarpa) (84 %), 10 KGray (85 %)로 가장 높았으나 10 KGray에서 흑축(Pharbitis nil Choisy)은 6 % 감소하였다. $IC_{50}$값을 무처리구와 빔 조사량에 대한 활성을 비교하면 1 KGray에서 산약(Dioscorea batatas Decne.) 6.3배, 5 KGray에서 천화분(Trichosanthes kirilowii Max.) 2.1배, 산약(Dioscorea batatas Decne.) 2.8배 증가하였다. ABTS free 라디칼 소거활성에서 1 KGray의 양성자 빔 에너지를 조사 했을 경우, 가자(Terminalia chebula Retzius)는 60 % 증가하였다. $IC_{50}$값은 1 KGray 빔 조사 시 0 KGray보다 마황근(Ephedra sinica Stapf) 2.0배, 가자(Terminalia chebula Retz.) 2.5배, 우방자(Arctium lappa Linne) 2.4배 증가하였다.

20 species of plants were extracted with Methanol and were investigated for DPPH radical scavenging activity and ABTs free radical scavenging activity to quest anti-oxidation ability depending on the proton beam irradiation quantity. In the proton beam irradiation, 15 species's activities increased but among them, Pharbities nil Choisy decreased at 10 KGray and 4 species' activity didn't change at all. In hydrogen ion radical elimination activity, Ulmus macrocarpa (84 %) showed the highest and Pharbitis nil Choisy showed 6 % decreasing at more than 1 KGray. By comparison with untreated $IC_{50}$ value, the beam-treated $IC_{50}$ value increased 6.3 times for Dioscorea batatas Decne. at 1 KGray, 2.1 times for Trichosanthes kirilowii Max., and 2.8 times for Dioscorea batatas Decne. at 5 KGray. In ABTs free radical elimination activity, the activity increased 60 % for Terminalia chebula Retzius compared with untreated one. Besides, the beam-treated $IC_{50}$ value increased 2 times for Gray Ephedra sinica Stapf, 2.5 times for Terminalia chebula Retz. and 2.4 times for Arctium lappa Linne at 1 KGray.

키워드

참고문헌

  1. M. R. Jeong, B. S. Kim, and Y. E. Lee, Physicochemical characteristics and antioxidative effects of Korean figs, J. East Asian Soc. Dietary. Life, 6, 12 (2002)
  2. G. T. Jung, I. O. Ju, J. S. Choi, and J. S. Hong, The antioxidative, antimicrobial and nitrate scavenging effects of Schizandra chinesis ruprecht (Omija) seed, Korean J. Food Sci. Technol., 32, 928 (2000)
  3. S. M. Kim, E. J. Kim, Y. S. Cho, and S. K. Sung, Antioxidant of pine extracts according to preparation method, J. Korean. Soc. Food Nutr., 28, 984 (1999)
  4. H. T. Barnes and C. C. Akoh, Effect of $\alpha$-tocopherol, $\beta$-carotene and isoflavones on lipid oxidation of structured lipid-based emulsions, J. Agric. Food Chem., 51, 6858 (2003)
  5. C. S. Foote and R. W. Denny, Chemistry of singlet oxygen quenching by β-carotene, J. Am. Chem. Soc., 90, 6233 (1968) https://doi.org/10.1021/ja01024a061
  6. R. E. Hayes, G. N. Bookwalter, and E. B. Bagley, Antioxidant activity of soybean flours and derivatives- A review, J. Food Sci., 42, 1527 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb08417.x
  7. J. K. Jang and J. Y. Han, The antioxidant ability of grape seed extracts, Korean J. Food Sci. Technol., 34, 524 (2002)
  8. J. C. Park, S. K. Chung, J. M. Hur, J. H. Lee, M. R. Choi, S. H. Song, and J. W. Choi, Effects of the components and extracts of some edible and medicinal plants on the formation of lipide peroxidation in rat liver homogenate, J. Korean Soc. Food Nutr., 26, 1159 (1997)
  9. Y. S. Rim, Y. M. Park, M. S. Park, K. Y. Kim, M. J. Kim, and Y. H. Choi, Screening of antioxidants and antimicrobial activity in native plants, J. Medicinal. Crop. Sci., 8, 342 (2000)
  10. Y. J. Kim, G. J. Cho, and J. H. Song, $Ag^+$ concentration effect on the shape of Au nanomaterials under proton beam irradiation, NIMB. B, 254, 73 (2007) https://doi.org/10.1016/j.nimb.2006.09.013
  11. C. H. Bae, Development of new ornamental plants and analysis of the mutants derived from ion beam irradiated plant organisms, Proton Engineering Frontier Project, Korean Atomic Energy Research Institute (2005)
  12. Y. I. Lee and K. S. Lee, Mutation breeding of ornamental and vegetable crops by using lon beam, Proton Engineering Frontier Project, Korean Atomic Energy Research Institute (2005)
  13. H. J. Kwon, Inducing mutation of mushroom by using proton beam, Proton Engineering Frontier Project, Korean Atomic Energy Research Institute (2005)
  14. B. S. Moon, G. Y. Son, J. K. Choi, D. W. Seo, and K. D. Lee, Research of antioxidant activity from plant resources using proton beam(1), J. Life Science, 17, 1100 (2007) https://doi.org/10.5352/JLS.2007.17.8.1100
  15. W. Brand-Willams, M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity, Lebensm.-Wiss, u.-Technol., 28, 25 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  16. M. S. Blois, Antioxidant determination by the use of a stable free radical, Nature, 181, 1199 (1958) https://doi.org/10.1038/1811199a0
  17. T. Gutfinger, Polyphenols in olive oils, J. Am. Oil Chem. Soc., 58, 966 (1981) https://doi.org/10.1007/BF02659771
  18. K. Miura and N. Nakatani, Antioxidative activity of flavonoid from Thyme, Agric. Biol. Chem., 53, 3043 (1989) https://doi.org/10.1271/bbb1961.53.3043
  19. L. J. Marnett, Peroxyl free radical: potential mediators of tumor initiation and promotion, Carcinogenesis, 8, 1365 (1987) https://doi.org/10.1093/carcin/8.10.1365
  20. M. R. Sangor and D. E. Pratt, Lipid oxidation and fatty acid changes in beef combined with vegetables and textured vegetable protein, J. Am. Diet Assoc. 64, 268 (1974)