Rhodococcus sp. RHA1 유래의 Indole Oxygenase의 클로닝 및 발현

Cloning and Expression of Indole Oxygenase Gene Derived from Rhodococcus sp. RHA1

  • 강미숙 (경성대학교 식품생명공학과) ;
  • 이진호 (경성대학교 식품생명공학과)
  • Kang, Mi-Suk (Department of Food Science & Biotechnology, Kyungsung University) ;
  • Lee, Jin-Ho (Department of Food Science & Biotechnology, Kyungsung University)
  • 발행 : 2009.09.28

초록

indigo는 염색산업에서 매우 중요한 색소로, 현재는 고가의 식물에서 추출된 indigo 대신에 합성 indigo가 주로 사용된다. 최근 미생물을 이용한 생물학적 방법으로 indigo를 생산하고자 하는 연구가 많이 진행되고 있으며, 여러 미생물원으로부터 다양한 형태의 indole oxygenase를 탐색, 특성의 규명, 효소의 특성 개량, indigo 생산등의 연구가 진행되고 있다. 본 연구는 Rhodococcus sp. RHA1 유래의 indole oxygenase로 추정되는 유전자를 클로닝하여 대장균에서 발현시킨 결과, 청색 색소가 축적되었으며, 분광광도계, HPLC 및 TLC분석을 통해서 그 청색 색소가 indigo임을 확인하였으며, 또한 전세포를 이용하여 indole 첨가시 indigo가 생성됨을 측정하여, 본 연구의 효소가 indole을 indigo로 전환을 촉매하는 indole oxygenase임을 확인하였고, 트립토판을 첨가한 TB배지에서 약 $236{\mu}M$의 인디고가 생산됨을 알았다. 본 연구를 통해 조사된 특성 이외에 효소 활성의 개량, 적절한 생산용 균주의 선정, 경제적이며 안정적인 대량 발현, 배지 및 배양 공정의 최적화 과정등을 거칠 경우, 보다 더 실용적인 indigo생산 생물공정의 확립이 가능할 것으로 기대된다.

An indole oxygenase originated from Rhodococcus sp. RHA1 was cloned into the expression vector, pTrc99A, in Escherichia coli, and designated pTCAN1. The pTCAN2 was constructed from pTCAN1 by the deletion of $lacI^q$ for the constitutive expression of indole oxygenase without adding IPTG in the medium. The complete open reading frame of indole oxygenase was 1,224 bp long, which encodes a protein of 407amino acids. Crude extracts of E. coli $DH5{\alpha}$/pTCAN1 and pTCAN2, respectively, were prepared and subjected to SDS-PAGE analysis. A band corresponding to molecular mass of about 43 kDa was appeared and this result correlated with the predicted molecular mass of cloned indole oxygenase. The E. coli harboring pTCAN1 and pTCAN2, respectively, showed blue color colony in LB plate. The pigment showing blue color was prepared from E. coli $DH5{\alpha}$/pTCAN2, and identified as indigo by experiments using spectrophotometer, HPLC, and TLC. The indigo-forming activity of indole oxygenases from the whole cell of E. coli $DH5{\alpha}/pTCAN1$ cultured at LB medium added 1mM of IPTG and that of E. coli/pTCAN2 showed about 1.75nmol/min/mg DCW (dry cell weight) and 3.85 nmol/min/mg DCW, respectively. Also, the E. coli $DH5{\alpha}$/pTCAN2 produced about $236{\mu}M$ of indigo after 48 hours incubation in TB medium supplemented with 2.5 mM of tryptophan.

키워드

참고문헌

  1. Berry, A., TC. Dodge, M. Pepsin, and W. Weyler. 2002. Application of metabolic engineering to improve both the production and use of biotech indigo. J. Indust. Microbiol. Biotech. 28: 127-133 https://doi.org/10.1038/sj.jim.7000228
  2. Canada, K. A., S. Iwashita, H. Shim, and T. K. Wood. 2002 Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol. 184: 344-349 https://doi.org/10.1128/JB.184.2.344-349.2002
  3. Cafaro, V., V. Izzo, R. Scognamiglio, E. Notomista, P. Capasso, A. Casbarra, P. Pucci, and A. D. Donato. 2004. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl. Environ. Microbiol. 70: 2211-2219 https://doi.org/10.1128/AEM.70.4.2211-2219.2004
  4. Choi, H. S., J. K. Kim, E. H. Cho, Y. C. Kim, J. I. Kim, and S. W. Kim. 2003. A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. 2003. Biochem. Biophy. Res. Comm. 306: 930-936 https://doi.org/10.1016/S0006-291X(03)01087-8
  5. Doukyu, N., K. Toyoda, and R. Aono. 2003. Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water-organic solvent two-phase system. Appl Microbiol Biotechnol. 60:720-725 https://doi.org/10.1007/s00253-002-1187-1
  6. Ensley, B. D., B. J. Ratzkin, T. D. Osslund, M. J. Simon, L. P. Wackett, and D. T. Gibson. 1983. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 222: 167-169 https://doi.org/10.1126/science.6353574
  7. Fraaije, M. W., N. M. Kamerbeek, W. J. H. Berkel, and D. B. Janssen. 2002. Identification of a Baeyer-Viliger monooxygenase sequence motif. FEBS Letters 518: 43-47 https://doi.org/10.1016/S0014-5793(02)02623-6
  8. Hart, S., R. Kirby, and D. R. Woods. 1990. Structure of a Rhodococcus gene encoding pigment production in Escherichia coli. J. Gen. Microbiol. 136: 1357-1363 https://doi.org/10.1099/00221287-136-7-1357
  9. Kim, I. C. and P. J. Oriel. 1995. Characterization of the Bacillus stearothermophilus BR219 phenol hydroxylase gene. Appl. Environ. Microbiol. 61: 1252-1256
  10. Kim, I. C., H. C. Chang, and P. J. Oriel. 1997. P.roduction of indigo and indirubin by Escherichia coli containing a phenol hydroxylase gene of Bacillus stearothermophilus. J. Microbiol. Biotechnol. 7: 197-199
  11. Kim, J. Y., K. Lee, Y. Kim, C. K. Kim, and K. Lee. 2003. Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase. Lett. Appl. Microbiol. 36: 343-348 https://doi.org/10.1046/j.1472-765X.2003.01279.x
  12. Kwon, N. R., J. C. Chae, K. Y. Choi, M. Yoo, G. J. Zylstra, Y. M. Kim, B. S. Kang, and E. Kim. 2008. Identification of functionally important amino acids in a novel indigo producing oxygenase from Rhodococcus sp. strain T104. Appl. Microbiol. Biotechnol. 79: 417-422 https://doi.org/10.1007/s00253-008-1445-y
  13. Lee, S. K., J. W. Park, S. R. Park, J. S. Ahn, C. Y. Choi, and Y. J. Yoon. 2006. Hydroxylation of indole by PikC cytochrome P450 from Streptomyces venezuelae and engineering its catalytic activity by site-directed mutagenesis. J. Microbiol. Biotechnol. 16: 974-978
  14. Li, Q. S., U. Schwaneberg, P. Fischer, and R. D. Schrnid. 2000. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into and indole-hydroxylating catalyst. Chem. Eur. J. 6: 1531-1636 https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1531::AID-CHEM1531>3.3.CO;2-4
  15. Lim, H.,K., E. J. Chung, J. C. Kim, G. J. Choi, K. S. Jang, Y. R. Chung, K. Y. Cho, and S. W. Lee. 2005. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 71: 7768-7777 https://doi.org/10.1128/AEM.71.12.7768-7777.2005
  16. McClay, K., C. Boss, I. Keresztes, and R. J. Steffan. 2005. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl. Environ. Microbiol. 71: 5476-5483. https://doi.org/10.1128/AEM.71.9.5476-5483.2005
  17. McLeod, M. P., R. L. Warren, W. W. Hsiao, N. Araki, M. Myhre, C. Femandes, D. Miyazawa, W. Wong, A. L. Lillquist, et al. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. 103: 15582-15587 https://doi.org/10.1073/pnas.0607048103
  18. O'connor, K. E., A. D. W. Dobson, and S. Hartmans. 1997. Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Microbiol. Biotechnol. 63: 4287-4291
  19. Rui, L., K. F. Reardon, and T. K. Wood. 2005. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 66: 422-429 https://doi.org/10.1007/s00253-004-1698-z
  20. Sambrook, J. and D. W. Russell. 2001. Molecular cloning : a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  21. Warren, R., W. W. Hsiao, H. Kudo, M. Myhre, M. Dosanjh, A. Petrescu, H. Kobayashi, S. Shimizu, K. Miyauchi, et al. 2004. Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1. J. Bacteriol. 186: 7783-7795 https://doi.org/10.1128/JB.186.22.7783-7795.2004