Analysis of Endospore-forming Bacteria or Nitrogen-fixing Bacteria Community Isolated from Plants Rhizosphere in Dokdo Island

독도서식 식물근권에서 분리한 포자형성세균과 질소고정세균의 군집구조 분석

  • Jeon, Seon-Ae (School of Life Sciences, and Research Institute for Dokdo & Ulleungdo Islands, Kyungpook National University) ;
  • Sung, Hye-Ri (School of Life Sciences, and Research Institute for Dokdo & Ulleungdo Islands, Kyungpook National University) ;
  • Park, Yu-Mi (School of Life Sciences, and Research Institute for Dokdo & Ulleungdo Islands, Kyungpook National University) ;
  • Pak, Jae-Hong (School of Life Sciences, and Research Institute for Dokdo & Ulleungdo Islands, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences, and Research Institute for Dokdo & Ulleungdo Islands, Kyungpook National University)
  • 전선애 (경북대학교 생명과학부, 경북대학교 울릉도 독도연구소) ;
  • 성혜리 (경북대학교 생명과학부, 경북대학교 울릉도 독도연구소) ;
  • 박유미 (경북대학교 생명과학부, 경북대학교 울릉도 독도연구소) ;
  • 박재홍 (경북대학교 생명과학부, 경북대학교 울릉도 독도연구소) ;
  • 김사열 (경북대학교 생명과학부, 경북대학교 울릉도 독도연구소)
  • Published : 2009.09.28

Abstract

Bacteria were isolated from roots of plants belonging to family Solanaceae and Gramineae, inhabited in Dokdo island. Fifty six endospore-forming bacteria grown on tryptic soy broth (TSB) agar medium and 23 nitrogen-fixing bacteria (NFB) grown on nitrogen free agar medium were isolated, respectively. The isolates were partially identified by analyzing the 16S rDNA and categorized into phylogenetic groups. The 16S rDNA sequences of each identified isolates were compared with sequences of each type strains to analyze phylogenetic relationship by phylogenetic tree. As a result, endospore-forming bacteria and nitrogen-fixing bacteria were classified into 4 and 6 lineage groups, respectively. Among these isolated, 18 were presumed to be novel species candidates based on the similarity (lower than 98%) analysis of the l6S rDNA sequences.

Keywords

References

  1. An, S. Y., T. Haga, H. Kasai, K. Goto, and A. Yokota. 2007. Sporosarcina saromensis sp. nov., an aerobic endosporeforming bacterium. Int. J. Syst. Evol. Microbiol. 57: 1868-1871 https://doi.org/10.1099/ijs.0.64962-0
  2. Brian, B., and M. Gardener. 2004. Ecology of Bacillus and Paenibαcillus spp. in Agricultural Systems. Phytopathol. 94:1252-1258 https://doi.org/10.1094/PHYTO.2004.94.11.1252
  3. Buckley, D. H., and T. M. Schmid. 2001. The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 42: 11-21
  4. Buckley, D. H., and T. M. Schmid. 2003. Diversity and dynarnics of microbial communities in soils from agro ecosystems. Environ. Microbiol. 5: 441-452 https://doi.org/10.1046/j.1462-2920.2003.00404.x
  5. Choi, E. H., S. E. Lee, K. S. Yoon, D. K. Kwon, J. K. Sohn, S. H. Park, M. S. Han, and S. -Y. Ghim. 2003. Isolation of nitrogen-fixing bacteria from gramineous crops and measurement of nitrogenase activity. Kor. J. Microbiol. Biotechnol. 31: 18-24
  6. Engelgard, M., T. Hurek, and B. Reinhold-Hurek. 2000. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice spεcies and land races of Oryza sativa in comparison with modem races. Environ. Microbiol. 2: 131-141 https://doi.org/10.1046/j.1462-2920.2000.00078.x
  7. Felsenstein, J. 1985. Confidence limits on phylogeneis: an approach using the bootstrap. Evolution. 39: 783-791 https://doi.org/10.2307/2408678
  8. George, M. G. 2001. Bergey's mannual of systematic bacteriology, 2nd ed. Springer-Verlag, New York
  9. Guido, B. V., and B. J. J. Lugtenberg. 2001. Molecular basis of plant growth promotioin and biocontrol by rhizobacteria. Curr. Opin. in Plnat Biol. 4: 343-350 https://doi.org/10.1016/S1369-5266(00)00183-7
  10. Ham, M. S., Y. M. Park, M. Sumayo, C. M. Ryu, S. H. Park, and S. Y. Ghim. 2009. Characterization of rhizobacteria isolated from farnily Solanaceae plants in Dokdo island. Kor. J. Microbiol. Biotechnol. 37: 110-117
  11. Hong, X. W., Y. P. Zhang, Y. W. Chu, H. F. Gao, Z. G. Jiang, and S. D. Xiong. 2008. Complete sequence determination and phylegenetic analysis of FKN among seven higher primates including homonids and Old World Monkeys. Yi Chuan. 30: 595-601 https://doi.org/10.3724/SP.J.1005.2008.00595
  12. Iftikhar, A., A. Yokota, A. Yamazoe, and T. Fujiwara. 2007. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1117-1125 https://doi.org/10.1099/ijs.0.63867-0
  13. Lee, S. H., S. E. Lee, K. J. Seul, S. H. Park, and S. -Y. Ghim. 2006. Plant growth-promoting capabilities of diazotrophs from wild Gramineous crops. Kor. J. Microbiol. Biotechnol. 34: 78-82
  14. Madigan, M. T., J. M. Martinko, and J. Parker. 2000. Endospore-forming, low G+C, gram-positive bacteria. pp.507-512. Brock Biology of Microorganisms. Prentice Hall. New Jersey. USA
  15. Murphy, J. F., M. S. Reddy, C.-M. Ryu, J. W. Kloepper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic vÍrus. Phytopathol. 93: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  16. Park, K. S., D. Paul, and W. H. Yeh. 2006. Bacillus vallismortis EXTN-1-mediated growth promotion and disease suppression in rice. Plant Pathol. J. 22: 278-282
  17. Patriarca, E. J., R. Tate, and M. Iaccarino. 2002. Key role of bacterial NH4+ metabolism in rhizobium-plant symbiosis. M.M.B.R. 66: 203-222 https://doi.org/10.1128/MMBR.66.2.203-222.2002
  18. Persello-cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26: 189-199 https://doi.org/10.1046/j.1365-3040.2003.00956.x
  19. Reasearch Institute for Dokdo & Ulleungdo Islands. 2008. The flora of Dokdo island. pp.166-221. Nature of Dokdo island. Kyungpook National University Press. Daegu. Korea.
  20. Saitou, N., and M, Nei. 1987. The neighbor-joining method: a new method reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  21. Torsvik, V., J. Glksoyr, and F.L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782-787
  22. Woo., P. C. Y., S. K. P. Lau, J. L. L. Teng, H. Tse, and K. Y. Yuen. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. C.M.I. 14: 908-934
  23. Yoon, J. H., S. J. Kang, S. Y. Lee, M. H. Lee, and T. K. Oh. 2005. Virgibacillus dokdonensis sp. nov., isolated from a Korean island, Dokdo, located at the edge of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 51: 1079-1086 https://doi.org/10.1099/ijs.0.63613-0
  24. Zhiyong, L., L. He, and X. Miao. 2007. Cultivable bacterial community from south China sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55: 465-472 https://doi.org/10.1007/s00284-007-9035-2