Journal of the Society of Korea Industrial and Systems Engineering

Vol. 32, No. 3, pp.188—193, September 2009.

Fork-and-Join A]Z

Hollxe] 28AE

A

A Scheduling Problem in Fork-and-Join System

Sang Hum Yoon*

- Ik Sun Lee**T

*School of Management, Yeungnam University

**School of Business, Dong-A University

3 LA 2]

A2g B3 SYH0E ANE ¥ HF YDA)%

E3H Fork-and-Join A]2Elo| 2] dAAGEAS 1L
TAFEHE ZH7F 2L F A dAdE REANGAGN 4 BE £

= A H a1, T3l A 1%%@% %—H
B =2 XE o]#|g Fork-and-Join AlaEoA HEAFA 7N makespan)S H4 35 & F e WA 3§

ol i Hote A3t A|(worst-case error bound)7} 28+ AL FHETE E3 AdE EAY FFEQ 37]-7\] ahekgk
(lower bound)& AATStL b FAAFE B3l Aty A4 sy Ane} shgiate) niag 58 A¢d Y

o) Aol $5ES TRV

Keywords : Fork-and-Join System, Scheduling, Worst-case Error bound

.M E

This paper considers a scheduling problem for a Fork-and-
Join (called as F&J) system. The F&J is a combined system
in which both the two-stage assembly and the two-stage dis-
assembly operations are performed. The two-stage assembly
system consists of multiple fabrication machines in the first
stage and a final assembly machine in the second stage. Each
fabrication machine produces its own type of component in-
dependently of the other machines. The assembly machine can
start its processing for a final product only when all the compo-
nents of the product are available from the precedent fabrication
machines. This shop model often appears in producing more

=Ry

=287 20004 078 30
T 3 A R} 1is1007@dau.ac ke
¥

% o] =8 Solgu deaH A dod AFHAL,

120094 09" 01

larger volume of products than any product produced in serial
flowshops. For example, the body and the chassis, which are
the components of a fire engine, can be manufactured in-
dependently and then brought into the assembly machine.
Production of the body and the chassis can take place in parallel,
but the final assembly machine cannot start its processing until
the body and the chassis are delivered to the assembly machine
(referring to Lee et al. [10]). Sun et al. [13] have suggested
another application of flexible manufacturing cell for machining
various components and assembling them into many different
kinds of products in small lot. Similarly, in computation work,
two or more sub-programs (tasks) are independently processed
first at their own parallel processors and then gathered at a

ARG & - 20004 098 012

Fork—and—-Join A|2E0AM2] ZyAL 2X|

main processor for final data-processing, where they either wait
for all of their siblings to finish processing or are put together
when processing is done on all the siblings [6]. See Potts et
al. [12], Hariri and Potts [5], Yoon and Sung [14], Koulamas
and Kyparisis[9], and Duda and Czachorski [1] for more in-
dustrial applications and the related scheduling researches in
the two stage assembly system.

The two-stage disassembly system is the reversal of the as-
sembly system, which begins with the assembly machine and
ending with the associated multiple fabrication machines. The
disassembly systems provide applications in industry such as
splitting products into their constituent components in a non-
destructive manner, which frequently appears in operation of
waste handling and repair facilities [3]. When a mishap to a
large product occurs, the product may be overhauled through
the work sequence of a main disassembly station and its sub-
sequent diagnosis/repair shops for the disassembled sub-parts.
For example, the overhaul of aircraft involves a disassembly
configuration {11]. Individual aircraft is disassembled into ma-
jor components and these components are repaired simulta-
neously in separate phases. This aspect requires splitting and
parallel operational phases to be introduced into the overall
overhaul model. In the phases, even if the subsequent parallel
shops are idle, they cannot start processing until arrival of a
new aircraft completing its disassembly operation at the main
splitting station. We can also see O’Shea et al. [11] and Gungor
and Gupta [4] for reviews of various disassembly planning
problems.

The F&J is concerned with a combined system in which
both the assembly and disassembly operations are performed.
Consider a multiple processor system in which all the sub-pro-
grams of a program are assigned separately to different processors.
In the system, once a final processor receives end-signs from
all of its precedent processors, it is allowed to execute its proc-
essing; for example, combining all the sub-programs into a final
form. In manufacturing systems, such sub-program processings
can be considered as disassembly processings concerned with
several productions initiated simultaneously. The F&J is often
called a Fork/Join network in queueing network theory.

The objective of this paper is to find the schedule which
minimizes the maximum completion time of all jobs (or make-
span) in the F&J. We first suggest a powerful heuristic, and
" then prove the worst-case error bound of the heuristic is 2.
Also, we suggest three lower bounds for the makespan problem
in F&J and then evaluate the performance of the heuristic
through comparing with the lower bounds.

189

2. Problem Descriptions

An F&J has one assembly machine and one disassembly
machine. All jobs first visit the disassembly machine and then
pass through m-2 parallel machines and the assembly machine
in sequence.

The following basic assumptions will be c\onsidered in the
proposed problem;

(a) individual tasks are not preemptable,

(b) ready times of all jobs are zero,

(¢) all processing times are known and deterministic, and

(d) only schedules having the same sequence on all ma-
chines(permutation schedules) are considered.

In scheduling theory, the assumption that jobs can be proc-
essed by at most one machine at the same time is often adapted.
However, the assumption is not required in the proposed prob-
lem having partly-synchronous processing features.

It seems that permutation schedules are dominant for all the
proposed problems, because the same sequence on parallel ma-
chines is profitable. Though it remains an open question for
F&J, the assumption (d) is reasonable since only permutation
schedules may be feasible in many manufacturing situations.
Some examples of these situations include systems with convey-
ors for material transfer between machines without sophisticated
control devices for altering the order of jobs, in which each
machine operates in FIFO(first in, first out) rule.

For convenience, some notations are introduced as follows;

i, j - subsctipts to denote specific jobs,

li], [5] : subscripts to indicate job positions,

k : subscript to denote a specific machine,

Py - processing time of job J on machine k,

py - set of processing times on machine k, p, = {py, Py

e pnk}’

S, 8" ta complete schedule and the optimal schedule, re-

spectively, and

C,..(S) makespan of S in F&J.

Specifically, the proposed problem is NP-complete, which
can also be verified by the following simple reasoning : A
4-F&J(with 2 parallel machines in the second stage) is the same
as a 3-machine flowshop when the processing times on the in-
termittent parallel machines are the same, that is, p;, = p;, =

= Pigm-g2)» for i=1, 2, -, n. It is well known that the

190 8YE -

3-machine flowshop problem for makespan is NP-complete
(referring to Garey et al. [2]), though the associated permutation
sequences are dominant.

In F&J, the idle time may exist at the intermittent machines
and the makespan is the sum of total idle time and total process-
ing time on A4, so that the optimal schedule is obtained by
minimizing the total idle time. That is,

where J;, the idle time immediately prior to J; at A4,
2 - set of all permutations, and

T, “sum of all processing times at A7,

And, the idle times on AZ, can be expressed as follows;

Lj)p = max |max; ¢y <o 2{2 p[;]k+1b })

_Ep[] 2[[7 la?

for ¢=2, -, n,

Iy, =max, ;. m—Z{p[l}k+‘[[1]k}

3. Heuristic and Lower Bounds

In’this section, a powerful heuristic procedure for the pro-
posed problem is suggested. The following theorem shows that
any heuristic procedure generating a permutation schedule guar-
antees the worst case error bound of 3 for the given problem.

Theorem 1 : Let S* be an optimal schedule and Sy be any
permutation schedule. Then, the following rela-
tion holds;

Omax (

S/, (ST < 3.

Proof : Let’s define

n n n
Y= Z%i"‘ Epia +tmaxy oo m2{2pik}

i=1 i=1 i=1

For any permutation schedule .S, we can note that the com-
pletion time of any job is less than or equal to Y. Hence, we
have

C

max

<y M

From the definition, we trivially have

c. (8" < v/3.

e

From (1), the proof is confirmed.

Now, we propose a heuristic algorithm using machine ag-
gregation and Johnson’s rule[8].

HI1 Heurisitc

m—2
Step 1 : Compute y, = > p,,/(m—2) fori=1, 2, -, n
k=1
Step 2 : Obtain two Johnson’s sequences for two two-machine
flowshop problem instances,{p; ,» vl <i <n}
and {y;, p, J1 <i<n}, respectively.
Step 3 : Select the better one between the obtained sequences.

Let Sy and G,

above H1 heuristic and its makespan, respectively. Then, we

(S) denotes the schedule generated by the
have the following theorem.

Theorem 2 : Let S™ be an optimal schedule. Then, the fol-
lowing relation holds;
Croesc (1) Conax (87) < 2.

Proof : Let .5) and .5, be the schedules generated by applying
Johnson’s rule to the two-machine flowshop problem
instances {p, s yll <i<n}and {y, pJl <i<

(8,) and C.,. (S,) be

the optimal makespans of the mentioned two-machine

n}, respectively, and let C
flowshop problems, respectively. Then, it is clear that

Cpne (S < min{ O (8) + Toy G (S,)+ T,

where 7,=)p,, and T, =

i=1

(13
Epi,d :
i=1

From this, we have

Fork—and—Join A|AE0IM2| LUFHH ZX| 191

2C (Sp) < Cre (S)+ Co (S)+ T+ T,)

Now, consider the feature of S”. Noting the C. (S,) and
Cro (S,) are the makespans of two-machine problem, trivially

we have

*

Coa (87) = max{ €, (), Coni(S)}.
Thus, it holds that

2C, (8 = o (S)+ L (S)). ?3)
From (2) and (3), and using the relation 2C,,. (S") > T, +
T, we obtain the relation C, (Sp)/ Chu (§7) < 2.
This completes the proof.

Now, we propose three lower bounds. The lower bounds can
be used in some branch-and-bound algorithms and used to eval-
uate the effectiveness of heuristics for large-sized test instances.

For convenience of expressing the lower bounds, some addi-
tional notations are introduced as follows;

o the partial sequence of a sub set of jobs,

o’ ‘the set of jobs that are not contained in o, and

G, * the completion time of a partial sequence o on M,
k=d, 1, 2, -, m—2, a.

It is easy to check that following four expressions can be

lower bounds for all schedules that begin with a given partial
sequence o are respectively

n
LB = lei,d +mini€u'{ma‘xl <k< mﬂ{pi,k}‘*'pi,a}
=

LB, =max; ., . m—2{Ca'k + Z,pik}+mini60'{pia}
IS0
and
n
LB; = mlniEa'{pid +pm}+max1 <k< m‘z{zpik}
i=1

The final lower bound is

LB=max{LB,, LB,, LB, LB} (4)

4. Computational Experiments

This section evaluates the performance trend of the suggested
HI heuristic and the lower bound, LB, through numerical tests.
Several uniform distributions are considered, as commonly con-
sidered in the literature. The processing times, p,;, p,, and
pp(k=1, -, m—2), are generated from U[1, 10]. For the
comparison test, the number of machines {m) is chosen from
the set {4, 8, 12}, and the number of jobs (n) is chosen from
the set {4, 6, 8, 10, 20, 40, 60, 80}. For each number of ma-
chines and jobs, 20 problems are generated to gather some
statistics. The expetiments are conducted on a 2.4 Ghz Pentium
IV with 512 MB memory.

The computational results are summarized as in <Table 1>,
which includes the solution gaps of the H1 heuristic, where
the solution gaps, Gapl(%) and Gap2(%) are represented by
((Soly— Sol) /S0l g) X 100 and ((Sol z— LB)/Sol g,) x
100, where Sol,; denotes the feasible solution value generated
by the H1 heuristic, and Sol,,, denotes the optimal solution
value found by the full enumeration procedure.

To evaluate the effectiveness of the lower bound procedure,
LB, the solution gap is evaluated, where the solution gap,
Gap3(%) is represented by ((Sol,~ LB)/LB)x100.

Moreover, in the table, NO1 and NO2 denote the number
of problems (out of 20) which finds the optimal solution value
by the H1 heuristic and LB, respectively.

Note that the full enumeration procedure can find the optimal
solution for the problem with at most 10 jobs, so that <Table 1>

<Table 1> Performance Test for Small-sized Problems

H1 LB
m n Gap1 Gap2 NO1 Gap3 NO?
aver. aver. aver,
4 5.15 18.18 8 12.49 3
6 6.30 12.30 4 5.66 8
! 8 8.26 10.32 1 1.90 10
10 6.61 10.26 2 3.45 8
4 271 6.44 12 3.56 11
6 8.18 1131 2 2.89 8
’ 8 5.25 9.17 3 375 10
10 7.27 8.86 2 1.52 12
4 447 9.66 5 4.98 9
6 557 8.16 5 245 11
12 8 6.43 11.10 2 442 8
10 3.69 539 7 1.61 15

192 895 - oM

{Table 2> Performance Test for Large-sized Problems

<Table 3> Performance Test for the situation with Bottle-
neck Second Stage

includes the problem instances with the job sizes between 4
and 10. From the table, it is noted that the H1 heuristic and
LB are very effective. The H1 heuristic has the average gap
value at most about 8.26% with very small time elapsed, and
the LB procedure has at most 12.49%.

To review the performance trend of the H1 heuristic for the
large job sizes between 20 and 100, <Table 2> is presented.
The table shows that the performance of the heuristic has also
the small average gap at most 11.55%, and moreover, the per-
formance of the algorithm increases slightly as the number of
the machines increases.

We consider a special situation where the parallel machines
in the second stage are bottleneck. Thus, the processing times
associated in the second stage are relatively larger than the proc-
essing times in other stages. The processing times, p,, and p;,
are generated from U{1, 10], while the processing times,
p(k=1, -, m—2) are generated from U/[10, 30]. It is ob-
served from <Table 3> that as the performance of the Agg-heu-
ristic gets better, compared with the computational results of
<Table 1>.

Finally, consider another situation where the machines in the
first and last stages are bottleneck. Thus, the processing times,
pi(k=1, -, m—2) are generated from I/[1, 10], while the
processing times, p,, and p,, are generated from U[10, 30].

It is observed from <Table 4> that as the performance trend

H1
m Gap2 aver. Gap2 max H1
20 11.55 31.82 m Gap2 aver. Gap2 max
40 10.00 21.89 20 0.36 1.25
4 60 9.67 17.10 40 022 0.87
80 9.87 15.49 4 60 020 0.60
100 11.13 16.97 80 0.10 0.37
20 8.84 17.83 100 0.08 024
40 6.10 13.90 20 047 1.42
8 60 624 12.84 40 022 0.66
80 5.68 9.51 8 60 0.11 0.43
100 5.41 10.05 30 017 0.44
20 6.80 16.92 100 0.11 0.28
40 6.41 14.46 20 0.53 1.67
12 60 430 8.89 40 0.29 0.85
80 47 7.85 12 60 0.19 0.51
100 4.12 8.82 80 0.13 0.34
100 0.10 0.27

<Table 4> Performance Test for the situation with Bott-

leneck first and final Stages

H1
m Gap2 aver. Gap2 max
20 552 26.54
40 4.62 9.91
4 60 6.16 23.77
80 4.65 15.79
100 2.87 9.89
20 6.00 15.23
40 4.56 15.40
8 60 4.81 13.20
80 333 13.47
100 2.91 10.63
20 747 2117
40 591 17.18
12 60 597 14.17
80 4.02 13.16
100 332 11.04

of the Agg-heuristic is similar, compared with the computa-

tional results of <Table 1>.

Fork—and—Join A|AES0IAM2| LFAHY =Xl 193

5. Conclusion Remarks

This paper considered a makespan scheduling problem in
the F&J system with non-serial flowshop configuration.

We suggested a heuristic using the well-known Johnson phi-
losophy for the two-stage flowshop and evaluated its perform-
ance by worst-case analysis and numerical tests.

This is the first research for the F&J system in deterministic
scheduling context, so that its result will provide underlined
ideas for the further research in similar systems.

References

[1] Duda, A. and Czachorski, T.; “Performance Evaluation of
Fork and Join Synchronization Primitives,” Acta Informatica,
24 1 525-553, 1987.

[2] Garey,M.R.and JohnsonD. S.; Computers and Intractabili-
ty © A Guide to the Theory of NP-completeness, Freeman,
1979

[3] Gershwin, S. B.; Manufacturing Systems Engineering,
Prentice-Hall, 1994,

{4] Gungor, A. and Gupta, S. M.; “Disassembly Sequence
Planning for Products with Defective Parts in Product
Recovery,” Computers and Industrial Engineering, 35 :
161-164, 1998.

[5] Hariri, A. M. A. and Potts, C. N.; “A Branch and Bound
Algorithm for the Two-stage Assembly Scheduling
Problem,” European Journal of Operational Research,
103 : 547-556, 1987.

[6] Heidelberger, P. and Trivedi K. S.; “Analytic Queueing

Models for Programs with Internal Concurrency,” [EEE
Transactions on Computers, 32 * 73-98, 1983.

[7] Hodgson, T. J. and McDonald, G. W.; “Interactive Scheduling
of a Generalized Flow Shop. Part 1 : Success through
Evolutionary Development,” Inferfaces, 11 : 42-47, 1981.

[8] Johnson, S. M.; “Optimal Two-and Three-stage Production
Schedules with Setup Times Included,” Naval Research
Logistics Quarterly, 1 61-68, 1954

[9] Koulamas, C. and Kyparisis, G. J.; “The Three-stage As-
sembly flowshop Scheduling Problem,” Computers and
Operations Research 28 : 689-704, 2001.

[10] Lee, C.-Y., Cheng, T. C. E., and Lin, B. M. T.; “Minimizing
the Makespan in the 3-machine Assembly-type Flowshop
Scheduling Problem,” Management Science, 3 : 616-625, 1993.

[11] O’Shea, B., Grewal S. S., and Kaebernick, H.; “State of
the Art Literature Survey on Disassembly Planning,”
Concurrent Engineering * Research and Applications, 6 :
345-357, 1998.

[12] Potts, C. N.; Sevast’janov, S. V., Strusevich, V. A., Wa-
ssenhove, L. N. V., and Zwaneveld, C. M.; “The Two-stage
Assembly Scheduling Problem : Complexity and Approxi-
mation,” Operations Research, 43 : 346-355, 1995.

[13] Sun, X., Morizawa K., and Nagasawa, H.; “Powerful
Heuristics to Minimize Makespan in Fixed, 3-machine,
Assembly-type Flowshop Scheduling,” European Journal
of Operational Research, 146 : 499-517, 2003.

[14] Yoon, S. H,, Lee L. S., and Sung, C. S.; “A Note on the
Reversibility of the Two Stage Assembly Scheduling Pro-
blem,” International Journal of Management Science, 13 :
25-34,2007.

