Effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin on the Neuronal Activity of Medial Vestibular Nuclear Neurons

  • Jang, Su-Jeong (Department of Physiology, Chonnam National University Medical School) ;
  • Jeong, Han-Seong (Department of Physiology, Chonnam National University Medical School) ;
  • Park, Jong-Seong (Department of Physiology, Chonnam National University Medical School)
  • Published : 2009.09.30

Abstract

This study was designed to investigate direct effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin, a $\delta$-opioid receptor agonist on the neuronal activity of medial vestibular nuclear (MVN) neurons by whole-cell configuration patch clamp experiments. The spike frequency of MVN neuron was increased to $9.50{\pm}0.55$ (P<0.05) and $10.56{\pm}0.66$ (P<0.05) by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin from the control level of $8.05{\pm}0.55$ spikes/sec, respectively (n=18). The resting membrane potential of the neurons was increased to $-37.86{\pm}0.92$ and $-36.97{\pm}0.97$ (P<0.05) from $-38.74{\pm}1.13\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The amplitude of afterhyperpolarization was decreased to $23.78{\pm}0.65$ and $21.67{\pm}0.89$ (P<0.05) from $23.73{\pm}0.53\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The spike width was changed to $2.22{\pm}0.08$ and $2.24{\pm}0.07$ from $2.20{\pm}0.08\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. After pretreatment of naltrindole, a highly selective 8-opioid receptor antagonist, [D-$Pen^2$, D-$Pen^5$]-enkephalin did not change firing rate, resting membrane potential, afterhyperpolarization amplitude, and spike width of MVN neurons. The above experimental results suggest that [D-$Pen^2$, D-$Pen^5$]-enkephalin increases the neuronal activity of MVN neurons via inhibition of calcium-dependent potassium currents underlying the afterhyperpolarization.

Keywords

References

  1. Aldrich EM, Peusner KD. Vestibular compensation after ganglionectomy: ultrastructural study of the tangential vestibular nucleus and behavioral study of the hatchling chick. J Neurosci Res. 2002. 67: 122-138. https://doi.org/10.1002/jnr.10076
  2. Beitz AJ, Clements JR, Ecklund LJ, Mullett MM. The nuclei of origin of brainstem enkephalin and cholecystokinin projections to the spinal trigeminal nucleus of the rat. Neuroscience 1987. 20: 409-425. https://doi.org/10.1016/0306-4522(87)90101-1
  3. Darlington CL, Smith PF. The recovery of static vestibular function following peripheral vestibular lesions in mammals: the intrinsic mechanism hypothesis. J Vest Res. 1996.6: 185-201. https://doi.org/10.1016/0957-4271(95)02042-X
  4. Dutia MB, Gilchrist DP, Sansom AJ, Smith PF, Darlington CL. The opioid receptor antagonist, naloxone, enhances ocular motor compensation in guinea pig following peripheral vestibular deafferentation. Exp Neurol. 1996. 141: 141-144. https://doi.org/10.1006/exnr.1996.0147
  5. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981. 391: 85-100. https://doi.org/10.1007/BF00656997
  6. Jeong HS, Jang MJ, Park JS. Effects of CGS-12066A on medial vestibular nuclear neurons. Brain Res. 2005. 1038: 118-121. https://doi.org/10.1016/j.brainres.2005.01.025
  7. Jeong HS, Lim YC, Kim TS, Heo T, Jung SM, Cho YB, Jun JY, Park JS. Excitatory effects of 5-hydroxytryptamine on the medial vestibular nuclear neuron via the 5-HT2 receptor. Neuroreport 2003. 27: 2001-2004.
  8. Kay AR, Wong RK. Isolation of neurons suitable for patchclamping from adult mammalian central nervous systems. J Neurosci Meth. 1986. 16: 227-238. https://doi.org/10.1016/0165-0270(86)90040-3
  9. Kitahara T, Kaneko T, Horii A, Fukushima M, Kizawa-Okumura K, Takeda N, Kubo T. Fos-enkephalin signaling in the rat medial vestibular nucleus facilitates vestibular compensation. J Neurosci Res. 2006. 83: 1573-1583. https://doi.org/10.1002/jnr.20830
  10. Lin Y, Carpenter DO. Direct excitatory opiate effects mediated by non-synaptic actions on rat medial vestibular neurons. Eur J Pharmacol. 1994. 262: 99-106. https://doi.org/10.1016/0014-2999(94)90032-9
  11. Nomura I, Senba E, Kubo T, Shiraishi T, Matsunaga T, Tohyama, Shiotani Y, Wu JY. Neuropeptides and gamma-aminobutyric acid in the vestibular nuclei of the rat: an immunohistochemical analysis. Distribution Brain Res. 1984. 311: 109-118. https://doi.org/10.1016/0006-8993(84)91403-3
  12. North RA, Williams JT. On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol. 1985. 364: 265-280. https://doi.org/10.1113/jphysiol.1985.sp015743
  13. Pan ZZ, Williams JT, Osborne PB. Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. J Physiol. 1990. 427: 519-532. https://doi.org/10.1113/jphysiol.1990.sp018185
  14. Peusner KD, Gamkrelidze G, Giaume C. Potassium currents and excitability in second-order auditory and vestibular neurons. J Neurosci Res. 1998. 53: 511-520. https://doi.org/10.1002/(SICI)1097-4547(19980901)53:5<511::AID-JNR1>3.0.CO;2-C
  15. Precht W, Dieringer N. Neuronal events paralleling functional recovery (compensation) following peripheral vestibular lesions. Rev Oculomot Res. 1985. 1: 251-268.
  16. Ris L, Godaux E. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol. 1988. 80: 2352-2367.
  17. Saika T, Takeda N, Kiyama H, Kubo T, Tohyama M, Matsunaga T. Changes in preproenkephalin mRNA after unilateral and bilateral labyrinthectomy in the rat medial vestibular nucleus. Brain Res Mol Brain Res. 1993. 19: 237-240. https://doi.org/10.1016/0169-328X(93)90034-M
  18. Sulaiman MR, Dutia MB. Opioid inhibition of rat medial vestibular nucleus neurones in vitro and its dependence on age. Exp Brain Res. 1998. 122: 196-202. https://doi.org/10.1007/s002210050507
  19. Twitchell WA, Rane SG. Nucleotide-independent modulation of Ca(2+)-dependent K+ channel current by a mu-type opioid receptor. Mol Pharmacol. 1994. 46: 793-798.
  20. Yasnetsov VV, Pravdivtsev VA. Chemical sensitivity of the medial vestibular nucleus to enkephalins, acetylcholine, GABA and L-glutamate. Biol Aviakosm Med. 1986. 20: 53-57.
  21. Zanni M, Giardino L, Toschi L, Galetti G, Calza L. Distribution of eurotransmitters, neuropeptides, and receptors in the vestibular nuclei complex of the rat: an immunocytochemical, in situ hybridization and quantitative receptor autoradiographic study. Brain Res Bull. 1995. 36: 443-452. https://doi.org/10.1016/0361-9230(94)00193-5