펄스열을 이용한 MR 영상의 Compressed Sensing 알고리즘 적용

Pulse Sequence based MR Images for Compressed Sensing Algorithm Applications

  • 고성민 (연세대학교 전기전자공학과) ;
  • 최나래 (연세대학교 전기전자공학과) ;
  • 김동현 (연세대학교 전기전자공학과)
  • Gho, Sung-Mi (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Choi, Na-Rae (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
  • 발행 : 2009.09.25

초록

최근 Compressed Sensing (CS) 알고리즘이 다양한 분야에서 연구되고 있으며, medical imaging 분야에서도 역시 이를 이용한 연구가 활발히 진행 중이다. CS 알고리즘을 이용하기 위해서는 복원하고자 하는 신호가 sparse한 성질을 지니고 있어야 한다. 일반적으로 대부분의 의료 영상의 경우, 이러한 성질을 가지고 있지 못하기 때문에 sparsifying transform을 이용하게 된다. 하지만 MR 영상의 경우, 다른 의료 영상 modality와 비교하여 적절히 펄스열을 이용하여 영상의 contrast를 조절할 수 있다는 특징을 가지고 있다. 이에 본 논문에서는 sparsifying transform을 이용하지 않고도 펄스열에 의한 MR 영상에 CS 알고리즘을 적용할 수 있는 가능성을 제시함과 동시에 적절한 sparsifying transform을 적용하여 영상의 sparsity를 더욱 강조함으로써 CS 알고리즘의 복원 성능을 더욱 향상 시킬 수 있다는 것을 제안하고자 하며, 이를 Shepp-Logan 팬텀 영상과 in vivo 영상을 이용한 시뮬레이션을 통하여 검증하였다.

In recent years, compressed sensing (CS) algorithm has been studied in various research areas including medical imaging. To use the CS algorithm, the signal that is to be reconstructed needs to have the property of sparsity But, most medical images generally don't have this property. One method to overcome this problem is by using sparsifying transform. However, MR imaging, compared to other medical imaging modality, has the unique property that by using appropriate image acquisition pulse sequences, the image contrast can be modified. In this paper, we propose the possibility of applying the CS algorithm with non-sparsifying transform to the pulse sequence modified MR images and improve the reconstruction performance of the CS algorithm by using an appropriate sparsifying transform. We verified the proposed contents by computer simulation using Shepp-Logan phantom and in vivo data.

키워드

참고문헌

  1. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Processing Magazine, Vol. 25, no. 2, pp. 83-91, March 2008 https://doi.org/10.1109/MSP.2007.914730
  2. W. L. Chan, M. Moravec, R. Baraniuk, and D. Mittleman, "Terahertz imaging with compressed sensing and phase retrieval," Optics Letters, Vol. 33, no. 9, pp. 974-976, April 2008 https://doi.org/10.1364/OL.33.000974
  3. M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, no. 6, pp. 1182-1195, December 2007 https://doi.org/10.1002/mrm.21391
  4. G. Hennenfent and F. J. Herrmann, "Simply denoise: wavefield reconstruction via jittered undersampling," Geophysics, Vol. 73, no. 3, pp. V19-V28, March 2008 https://doi.org/10.1190/1.2841038
  5. M. Sheikh, O. Milenkovic, and R. Baraniuk, "Designing compressive sensing DNA microarrays," IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Thomas, U.S. Virgin Islands, December 2007
  6. S. F. Cotter and B. D. Rao, "Sparse channel estimation via matching pursuit with application to equalization," IEEE Trans. on Communications, Vol. 50, no. 3, pp. 374-377, March 2002 https://doi.org/10.1109/26.990897
  7. H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye, "k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI," Magnetic Resonance in Medicine, Vol. 61, no. 1, pp. 103-116, January 2009 https://doi.org/10.1002/mrm.21757
  8. R. R. Edelman, D. Chien, and D. Kim, "Fast selective black blood MR imaging," Radiology, Vol. 181, pp. 655-660, December 1991
  9. W. T. Dixon, L. N. Du, D. D. Faul, M. Gado, and S. Rossnick, "Projection angiograms of blood labeled by adiabatic fast passage," Magnetic Resonance in Medicine, Vol. 3, no. 3, pp. 454-462, June 1986 https://doi.org/10.1002/mrm.1910030311
  10. L. Axel, and L. Dougherty, "MR imaging of motion with spatial modulation of magnetization," Radiology, Vol. 171, pp. 841-845, June 1989
  11. P. A. Bottomley, and C. J. Hardy, "Two- dimensional spatially selective spin inversion and spin-echo refocusing with a single nuclear magnetic resonance pulse," J. Appl. Phys. Vol. 62, pp. 4284-4290, November 1987 https://doi.org/10.1063/1.339103
  12. J. H. Mugler. Ⅲ, and J. R. Brookeman, "Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)," Magnetic Resonance in Medicine, Vol. 15, no. 1, pp. 152-157, July 1996 https://doi.org/10.1002/mrm.1910150117
  13. M. N. Do, and M. Vetterli, "The contourlet transform: An efficient directional multiresolution image representation," IEEE Trans. Image Proc, Vol. 14, no. 12, pp. 2091-2106, December 2005 https://doi.org/10.1109/TIP.2005.859376
  14. J. N. Draper, M. L. Lauzon, and R. Frayne, "Passive catheter visualization in magnetic resonance–guided endovascular therapy using multicycle projection dephasers," Journal of Magnetic Resonance Imaging, Vol. 24, no. 1, pp. 160–167, July 2006 https://doi.org/10.1002/jmri.20619