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( Optimization of the Coil Head of Metal Detectors Using a Magnetic
Vector Potential Approach )
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Abstract

We derive an equation that predicts the induced voltage across the receiving terminals of the three—coil head of a metal
detector using a magnetic vector potential approach. We also derive an equation that relates the change of the impedance
of the transmitting coil to the properties of the metal. We utilize the results to obtain the optimum spacing between the
driving and the receiving coils at which the maximum induced voltage is attained. Further, we determine the position of
the metallic object where the voltage reaches its peak. We verify our work by comparing the results with those of a

2EH

2|

previous work.
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1. Introduction

Metal detectors are widely used for quality control
of food, medicine and for detecting weapons and
etc. There are several types of metal
detectors: solenoid type, separated-loop type, and
closed-loop type, and so forth. Most of the metal
detectors make use of the eddy cwrent induced on
the metal surface. Among the various types, the
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closed-loop type with a three-coil head is most
widely used for industrial applications.

The three-coil head detects metal through the
imbalance of the magnetic field in the receiving coils
caused by the eddy current on the metallic object.
The three-coil head has advantages that the path for
the material under test is of tunnel type, that the
magnetic field in the aperture is uniform and that
there are two chances for detection because of the
The sensitivity of the metal
detector depends on the structure, dimensions, and

two receiving coils.

spacing of the head coils.
In this paper, we derive an equation that predicts
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the induced voltage across the terminals of the
closed-loop receiving coils through analysis of the
vector magnetic potential which gives us good insight
into the principle of the metal detection. During the
derivation of the equation, we also derive an equation
of the input impedance variance of the transmitting
coil due to the fields generated from the eddy current
on the surface of the metallic object. The eddy
current is induced by the fields from the transmitting
coll. The impedance variation is dependent upon the
‘dimension and properties of the metallic object.

In section II, we analyze the change in vector
magnetic potential due to the eddy current on the
surface of the metallic object. From the change in
vector magnetic potential, we derive the voltage
across the terminals of the receiving coils. In the
midst of the derivation, we obtain the relation
between the variation of the input impedance of the
transmitting coil and the properties of the metallic
object. In section I, we use a numerical method to
obtain the optimum spacing between the transmitting
and receiving coils. In addition, we obtain the position
of the metallic object where the induced voltage is

maximum. In section IV, we conclude our work.
. Derivation

Fig.1 shows the basic structure of the closed-loop
type three-coil head of the metal detector. It consists
of a single-turn transmitting coil and two single-turn
connected receiving coils. The material under test
passes through the aperture formed by the coils. The
simplified diagram of the three—coil head is shown in
Fig.2, where a metallic sphere to be detected is
shown in-between the (inner) transmitting and the
(right) receiving coils. For the brevity of analysis, the
shape of the coils are assumed to be circular. The
three identical coils are arranged such that their
centers are aligned coaxially and the spacings
between them are equal.

In the figure, s denotes the spacing between the
coils, z the distance from the center of the inner coil
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Fig. 1. The structure of the closed-loop type three—cail
head of the metal detector,
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Fig. 2. The configuration of the three—coil head of the

metal detector.

to the metallic object, r the radius of the coils and «
the radius of the metallic sphere (not marked on the
figure). The immer coil is the transmitter and is
driven with an alternating current. We assume that
the dimension of the head is very small compared
of the
we

with the wavelength driving alternating
the

displacement current term in the Maxwell equation.

current, which means can neglect
The outer coils are the receiver and are used to
detect the imbalance caused by a metallic object put
through the coils via a conveyer belt or any other
means.

When there is no electromagnetic material in the
head that disturbs the symmetry,

induced in the two receiver coils cancel since the

the voltages

magnetic flux density variations inside both coils are
identical. We use magnetic vector potential to
calculate the induced voltages in the receiver coils.
We first obtain the magnetic vector potential in the

space where current 7 flows in the transmitter coil
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and a metallic sphere with a conductivity ¢ and a
relative permeability p, resides on the co-axis and

off from the center of the (inner) transmitter coil
with a distance z. Due to the spherical metallic
object, the magnitude variation AA of the vector
magnetic potential becomes'”

Hol & sina
5 ngl——n(n+1)Pn(cosa)

X Pl(cos8)D(p)c "g ™!

ad= 1)

where D(p) is given by

D(p) =gl
u, (2n+1)1
n+

l(a\/ﬁ)

B 2
aVipI _, (avip) +nly,~DI  (avip)
2 2

1

I is the current in the transmitter coil, P () is

the associated Legendre function of degree n and of
order 1 of the first kind, Z,(+) is the modified

Bessel function of order n, and p= wauou,ﬂ[z”a]. In
the expression of p, w is angular frequency, which is
2nf, o is conductivity, p, is the permeability of
vacuum, and g, is relative permeability. For brevity,

we approximate Eq.(1) as

_ tol sina _;
AA= 5 o f

X Pl(cos®)D(p)c g ?

(cosa)

3

by taking only the first term. This approximation is
valid since the contributions from the other terms are
negligible. By Stokes’ theorem, magnetic flux can be
obtained from the magnetic vector potential as

o=¢fB.as
S
S £

where the subscripts 5 and ¢ in the integral sign

4

denote surface and line, respectively, and the line
integral is to be taken along each receiver coil.
Therefore, the increase in magnetic flux in coil 1 due
to the metallic sphere is obtained as

(361)
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by substituting Eq.(3) into Eq.(4) and performing the
integration along coil 1. This is the increase in the
magnetic flux that passes through coil 1 due to the
eddy current on the metallic sphere. Since the
electromotive force emf generated by the varying
magnetic flux is given by

do .
emf=— TR w®,

the increases in emf in coil 1 and coil 2 are

T lrsina
&2—Pll(cosa)

X Pf(cosO)D(p)cf 1q7 2

emf, =—jw

(6)

and

mTulrsina
uo—-——Pl(cosa)

2 1

x P}Hcos8')D(p)e™ g ™2

emf, =—jw
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respectively. Since we use, as the measured voltage,
the difference of the two emf’s, ie., emf; —emf,, we

have

T drsina -
V:—jw’uoT—XPf(COSO‘)D(p)C '

X [Pll(cosb?)q' 2— PMcosh')q ™ 2] .

(8

Now, we investigate the impact of the metallic
object on the input impedance of the transmitting
coil. We may conjecture that the input impedance of
the transmitting coil may vary due to the change of
the mutual inductance between the transmitting and
receiving coils. The change of impedance due to the
eddy current on the metallic sphere may be obtained
as

AZ=—jw——‘. ©);

I

By substituting Eq.(5) into Eq.(9), we have
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W LyTsina
AZ=— 2—M02——P11(cosa)

X P(cos8)D(p)c q 2.

(10)

We can obtain the change of the input impedance
of the transmitting coil by substituting 8 = «, g =c,
and z = z.

Then, as the change of the input impedance of the
transmitting coil, we have

JjwTuersing

AZ= o~ (Pl(cosa)) Dip)e .

(11)
The term D(p) in Eq.(11) is expressed in terms of
the dimension and the properties of the metallic
object the radius, permeability,
conductivity as can be seen from Eq.(2).

such as and

III. Result

We utilize the obtained equation to find the
optimum spacing s,,. between the transmitter and
the receiver coils that maximizes the induced voltage.
To plot the voltage variation with respect to the
spacing s and the position z of the metallic object,
we normalize s and 2 with the radius r of the coils.
The voltage is normalized with the transmitter coil
current /. The optimum spacing and the position are
independent of the properties and dimension of the
material. The frequency is chosen for ease of
implementation and to meet the assumption that the
dimensions of the coils are negligibly small compared
to the wavelength of the operating signal. In this
paper, we predict the voltage when the metallic
object is of iron, ie, p,= 110, o =1.06 X 10" S/m,
and the radius is a/r=0.03 and the operating
frequency is f= 100 kHz. Fig.3 shows the voltage
variation vs. z/r and s/r. The voltage attains its
maximum when s,/r=0.65 and z/r=0.5, which
means the induced voltage is maximum when the
spacing between the coils is 0.65 of the radius of the
coils and when the position of the metallic sphere is
at 0.5r off the center of the transmitting coil. The
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Fig. 3. The voltage variation vs. z/r and s/r. The

properties and dimension of the metallic object
are p. =110, 6=1.06%x10" S/m, and a/r=
0.03. The operating frequency is f =100 kHz.

results agree well with the result obtained with that
of the mutual inductance approachm.

Further, we investigate the variation of the input
impedance of the transmitting coil due to the metallic
object given by Eq.(11). The impedance variation is
of complex form, consisting of real and imaginary

parts as in

AZ= AR+ jAX (12)

Fig. 4 shows the impedance variation vs. the
variation of conductivity and relative permeability
when the coil dimensions are 7= 0.15 m, z/r=20.5
and a=4 mm, and the frequency is f= 100 kHz.
The conductivity o of the metallic object varies from
0.0001x10" to 5.0x10" S/m and the relative
permeability u, from 1 to 100. We find that the
relative permeabilities over 50 do not make much
difference on the variation of the impedance.
Considering that most of the metals have a relative
permeability over 50, we may ignore the effect of the
relative permeability in metal detection. In Fig.5, we
show the variation of the impedance variation vs. the
variation of the dimension and the conductivity of the
metal. The coil dimension is r=0.15 m, z/r=10.5
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a metallic object can be identified as a point on the
plot. However, since the magnitude of the variation of
the impedance is so small that, for effective

= identification, an elaborate scheme should be devised

-E;; to amplify the variation.

g
;
IV. Conclusion
4 We derived an equation for the induced voltage in
’ °? AR (1m]) e » ’ the three single-turn coil head of the metal detector
using a magnetic vector potential approach which
a3 4 jj-;—‘.:-l-él ﬁ—?—gé;; x-iff?'_ E:f j‘;‘ ;—'Oiig—' gives us good insight into T:he pn'ncipl.e. The equation
50x107 S, a=4 mm =015 m was utilized to find the optimum spacing between the
z/r=05, f=100 kHz coils with which the induced voltage difference at the

Fig. 4. The impedance variation vs. u.=1-100 and receiver coils attains its maximum. It was shown

0=00001-50x10" S$/m. a=4 mm and that the optimum spacing between the coils is 0.657
r=015m, 2/r=05, f=100 kHz. (r is the radius of the coil) and the peak voltage is

x 107 obtained when the metallic sphere is at 0.5r off the
ol \\&\;71\0\5 center of the transmitter coil, which agrees well with
T the previous results, justifying our work. We further

5 derived an equation of the impedance variation of the

£ 7 transmitting coil due to the metallic object

f; in-between the coils. The impedance variation is

ol dependent upon the dimension and the properties (.e.,

conductivity and permeability) of the metallic ohject.

. : - . . The result may be used to identify the dimension and

AR (real) 107 type of the metal, which we leave as further study.
a8 5 3%29 37|92 MERo wE &4 39 ¢
TEA #HE (a=3-5 mm o o=06- Preference

6.0x10°S/m. ), r=0.15 m z/r=0.5,

u, =110, f=100 kHz (1] W. R. Smythe, “Static and Dynamic Electricity”,

Fig. 5. The impedance variation vs. a=3—5 mm and 3rd ed, New York, McGraw-Hill, pp. 280-290,

c=06-6.0x10" S/m. r=015 m, z/r=0.5,
p, =110, £=100 kHz.

and the frequency is f =100 kHz. The dimension
and conductivity of the metallic object are radius
a=3—5 mm, conductivity ¢ = 0.6—6.0x10" S/m
which are typical values for metallic objects.

The impedance variation due to the dimension of
the metallic objects is approximately linear, but that
due to the conductivity is quite nonlinear.

We can see that the radius and the conductivity of

(363)

1968.

S. Yamazaki, T. Negishi, H. Nakane, and A.

Tanaka, “Simultaneous measurement of

electrical and magnetic properties of a spherical

sample,” [EEE Trans. Instrum. Meas.,, vol. 45,

no. 2, pp. 563-567, 19%.

[3] M. Brighton and M. J. English, “Calculation of
optimum spacing for a three coil axially
symmetric metal detector,” Electronics Letters,
vol. 29, no. 10, pp. 838-839, 1993.

(2]



20098 98 TxzE3

:RF % vlo|azs} g2, 54 4

=2X| H 46 # SC H

A XA
2 F MR
20074 SE TR AAHAGHR
BATHR A} £
2000d FEdista AR A
N2RF s A 29,
20093 ~ A A @A DAF

(364)

43

Hb5=

7H

2 & FHAYY
1985 A& ot
AL £4.
AEgd g HAx3ea
AL &4,
19953 The University of Texas
at Austin BHAF 4.

zg_;q] %.\EH:HHL—! x-]7];<4ﬁ ‘_—To'—?‘ﬂ'-_tl'_
RV

-‘&"‘:‘H"F RF ¥ wmlojzzs 32, B4 A
iﬂﬂ>

A 7

AR

1987

1997d ~



