DOI QR코드

DOI QR Code

Numerical analysis of tunnelling-induced ground movements

터널굴착으로 발생한 지반거동에 대한 수치해석적 분석

  • 손무락 (대구대학교 토목공학과) ;
  • 윤종철 (대구대학교 토목공학과)
  • Published : 2009.09.30

Abstract

Numerical analysis has been performed to estimate maximum settlement, maximum horizontal displacement and total settlement volume at the ground surface due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. In addition, the volume loss ($V_L$) at tunnel excavation face has been compared with the total surface settlement volume ($V_s$) with the variation of ground condition, tunnel depth, and tunnel diameter. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

본 논문에서는 터널굴착으로 발생한 지표면에서의 최대 침하 및 수평변위와 총 침하부피량을 추정하기 위하여 서로 상이한 지층에서 다양한 깊이 및 직경, 서로 다른 시공조건(지반손실량)을 가진 터널에 대해 수치해석을 수행하였다. 수치해석 결과로부터 얻어진 지표면에서의 최대 침하량은 터널 굴착부 천단에서의 최대 침하량과 지층별, 터널직경 및 깊이, 시공조건(지반손실량)별로 비교되었으며, 또한 지표면에서의 최대 침하량은 지표면에서의 최대 수평변위량과도 비교하였다. 뿐만 아니라, 터널굴착부에서 발생한 지반손실량($V_L$)과 지표면에서 형성된 총 침하부피량($V_s$)을 지층 및 터널깊이와 직경을 달리하여 상호 비교하였다. 수치해석을 통해 얻어진 결과는 그 적용성과 타당성을 검증하기 위하여 기존 현장계측자료와의 비교가 수행되었으며, 이를 통해 본 연구의 수치해석 결과가 향후 터널굴착으로 발생된 주변 지반의 거동을 파악하고 분석하는 실무자료로서 활용될 수 있다는 것을 파악하였다.

Keywords

References

  1. 유충식, 김주미, 김선빈 (2006), "굴착공법이 터널변위 거동에 미치는 영향-수치해석 연구", 터널기술, 한국터널공학회 논문집, 제8 권, 제4호, pp. 289-305
  2. Addenbrooke, T. I., Potts, D. M., and Puzrin, A. M. (1997), "The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction", Geotechnique, Vol. 47, No. 3, pp. 693-712. https://doi.org/10.1680/geot.1997.47.3.693
  3. Attewell, P. B. (1978), Ground movements caused by tunnelling in soil, Proc. Conf. Large Ground Movements and Structures, Cardiff, Pentech Press, pp. 812-948.
  4. Cheng, C. Y., Dasari, G. R., Chow, Y. K., and Leung, C. F. (2007), "Finite element analysis of tunnel-soil-pile interaction using displacement controlled method", Tunnelling and Underground Space Technology, VoI. 22, pp. 450-466. https://doi.org/10.1016/j.tust.2006.08.002
  5. Clough, G. W. and Leca, E. (1989), With focus on use of finite element methods for soft ground tunneling, Review paper in Tunnels et Micro-TunneIs en Terrain Meuble-du Chantier a la Theorie, Presse de l'Ecole Nationale des Ponts et Chaussees, Paris, pp. 531-573.
  6. Clough, G. W. and Schmidt, B. (1981), Design and performance of excavations and tunnels in soft clay, Soft Clay Engineering, Elsevier, NY, pp. 569-634
  7. Cording, E. J. and Hansmire, W. H. (1975), Displacements around soft ground tunneIs, General Report, Session 4, 5th Panamerican Cong. on Soil Mech. and Foun. Engr. Buenos Aires, November.
  8. Cording, E. J., Hansmire, W. H., MacPherson, Lenzini, P. A., and Vonderohe, A. D. (1976), Displacements around tunnels in soil. Report by the University of Illinois at Urbana-Champaign for the U.S. Dept. of Transportation, No. DOT-TST-76T-22
  9. Cording, E. J. (1991), Control of ground movements around tunnels in soil, Ninth Pan American Conference, Vina del Mar, Chile. Sociedad Chilena de Geotechina, VoI. 4, pp. 2195-2244.
  10. Dasari, G. R. (1996), Modelling the variation of soil stiffness during sequential construction, Ph.D. dissertation, University of Cambridge, UK
  11. Dasari, G. R., Rawlings, C. G., and Bolton, M. D. (1996), Numerical Modeling of a NATM tunnel construction in London Clay, Proc. of Int. Sym. on Geotechnical Aspect of Underground Construction in Soft Ground (eds. Mari, R. J. and Taylor, R. N.), Balkema, London, pp. 491-496.
  12. Deane, A. P. and Bassett, R. H. (1995), The Heathrow Express Trial Tunnel, Proc. of Inst. of Civil Engineers, VoI. 113 (July), pp. 144-156
  13. Ghaboussi, J., Ranken, R. E., and Karshenas, M. (1978), Analysis of subsidence over soft-ground tunnels, Proc. Int. Conf. on Evaluation and Prediction of Subsidence, Pensacola Beasch, FL, pp. 182-196.
  14. Glossop, N. H. (1978), Soil deformation caused by soft ground tunneling, Ph.D. dissertation, University of Durham, UK.
  15. Gunn, M. J. (1993), The prediction of surface settlement profiles due to tunnelling, Proc. of Wroth Memorial Symposium held at St Catherine's College (eds, S. Houlsby), Oxford, Thomas Telford, London, pp. 304-316.
  16. Hong, S. W. and Bae, G. J. (1995), Ground movements associated with subway tunneling in Korea, Underground Construction in Soft Groundt (eds. K. Fujita and O. Kusakabe), Balkema, pp. 229-232.
  17. Hong, S. W. (1984), Ground movements around modeI tunnels in sand, Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL. USA.
  18. Lee, K. M. and Rowe, R. K. (1989), "Deformations caused by surface loading and tunneling: the role of elastic anisotropy", Geotechnique, Vol. 39(1), pp. 125-140. https://doi.org/10.1680/geot.1989.39.1.125
  19. Lee, K. M. and Rowe, R. K. (1990), Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils: Part 1 - method of analysis, Part 2 - results, Computer and Geotechnics, VoI. 10, pp. 87-138 https://doi.org/10.1016/0266-352X(90)90001-C
  20. Leca, E. (1996), Modelling and prediction for bored tunnels, Proc. of Int. Sym. on Geotech. Aspects of Underground Construction on Soft Ground (eds, R. J. Mair and R. N. Taylor), BaIkema, London, pp. 27-42.
  21. Loganathan, N. and Poulous, H. G. (1998), Analytical prediction for tunneling-induced ground movements in clays, J. of Geote. and Geoen. Engr., VoI. 124(9), USA, pp. 846-856 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
  22. Mair, R. J. (1979), Centrifugal Modeling of tunneling costruction in soft clay, Ph.D. dissertation, University of Cambridge, U.K
  23. Mair, R. J., Phillips, R., Schofield, A. N., and Taylor, R. N. (1984), Application of centrifuge modelling to the design of tunnels and excavations in soft clay, Proc. of symposium on the application of centrifuge modelling to geotechnical design, Manchester, April, Balkema, pp. 357-380.
  24. Martos, F. (1958), Concerning an approximate equation of the subsidence trough and its time factors, In International strata control congress, Leipzig, pp. 191-205.
  25. Moeller, S. C. and Vermeer, P. A. (2008), On numerical simulation of tunnel installation, Tunnelling and Underground Space Technology, VoI. 23, pp. 461-475 https://doi.org/10.1016/j.tust.2007.08.004
  26. O'Reilly, M. P. and New, B. M. (1982), Settlements above tunnels in the United Kingdom - their magnitude and effects, Tunnelling '82, M. J. Jones, ed., London, England, pp. 173-181.
  27. Panet, M. and Guenot, A. (1982), Analysis of convergence behind the face of a tunnel, Proc. Tunnelling 82, Institution of Mining and Metallurgy, London, pp. 197-204.
  28. Potts, D. M. (1976), Behavior of lined and unlined tunnels in sand, Ph.D. dissertation, University of Cambridge, U.K.
  29. Peck, R. B. (1969), Deep excavations and tunneling in soft ground, Proc. 7th Int'l Conf. on Soil Mech. and Foun. Engr., Mexico City, State-of-the-Art, pp. 225-290.
  30. Sagaseta, C. (1987), "Analysis of undrained soil deformation due to ground loss", Geotechnique, Vol. 37(3), pp. 301-320. https://doi.org/10.1680/geot.1987.37.3.301
  31. Stallebrass, S. E., Jovicic, V., and Taylor, R. N. (1994), The influence of recent stress history on ground movements around tunnels, Prefailure Deformation of Geomaterials (eds, Shibuya, S., Mitachi, T., and Miura, S), Balkema, London, pp. 612-620
  32. Verruijt, A. and Booker, J. R. (1996), "Surface settlements due to deformation of a tunnel in an elastic half plane", Geotehchnique, Vol. 46(4), London, U.K., pp. 753-756 https://doi.org/10.1680/geot.1996.46.4.753