Beneficial Effects of Microwave-Induced Argon Plasma Treatment on Cellular Behaviors of Articular Chondrocytes Onto Nanofibrous Silk Fibroin Mesh

  • Jin, Soo-Chang (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Baek, Hyun-Sook (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Woo, Yeon-I (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Lee, Mi-Hee (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Kim, Jung-Sung (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Park, Jong-Chul (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Park, Young-Hwan (Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Science, Seoul National University) ;
  • Rah, Dong-Kyun (Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine) ;
  • Chung, Kie-Hyung (Physico-Technology Laboratory, Korea Accelerator and Plasma Research Association) ;
  • Lee, Seung-Jin (College of Pharmacy, Ewha Womans University) ;
  • Han, In-Ho (Institute for Clinical Dental Research, Korea University)
  • Published : 2009.09.25

Abstract

Silk fibroin scaffolds were examined as a biomaterial option for tissue-engineered cartilage-like tissue. In tissue engineering for cartilage repair using a scaffold, initial chondrocyte-material interactions are important for the following cell behaviors. In this study, the surface of nanofibrous silk fibroin (NSF) meshes was modified by a microwave-induced argon plasma treatment in order to improve the cytocompatibility of the meshes used as cartilaginous grafts. In addition, the effects of a plasma treatment on the cellular behavior of chondrocytes on NSF were examined. The plasma treatment resulted in an increase in the hydrophilicity of NSF meshes suggesting that the cytocompatibility of the mesh might be improved. Furthermore, the human articular chondrocytes showed higher viability on the surface-modified NSF meshes. These results suggest that the surface modification of NSF meshes by plasma can enhance the cellular behavior of chondrocytes and may be used in tissue engineering.

Keywords

References

  1. C. Ozcan and N. Hasirci, J. Biomater. Sci. Polym. Ed., 18, 759 (2007) https://doi.org/10.1163/156856207781034124
  2. V. Pesskov$\acute{a}$, D. Kubies, H. Hulejov$\acute{a}$, and L. Himmlov$\acute{a}$, J. Mater. Sci. Mat. Med., 18, 465 (2007) https://doi.org/10.1007/s10856-007-2006-0
  3. G. Keselowsky, D. M. Collard, and A. J. Garcia, Proc. Natl. Acad. Sci. U.S.A., 102, 5953 (2005) https://doi.org/10.1073/pnas.0407356102
  4. S. F. Williams, D. P. Martin, M. D. Horowitz, and O. P. Peoples, Int. J. Biol. Macromol., 25, 111 (1999) https://doi.org/10.1016/S0141-8130(99)00022-7
  5. J. Sacristan, H. Reinecke, and C. Mijangos, Polymer, 41, 5577 (2000) https://doi.org/10.1016/S0032-3861(99)00784-3
  6. M. S. Sheu, A. S. Hoffman, and J. Feijen, J. Adhesion Sci. Technol., 6, 995 (1992) https://doi.org/10.1163/156856192X00890
  7. M. B. Chan-Park, J. Zhang, J. X. Gao, and E. J. Liu, J. Adhesion Sci. Technol., 16, 1883 (2002) https://doi.org/10.1163/15685610260427665
  8. X. Sun, J. Liu, and M. L. Lee, J. Appl. Polym. Sci. Anal. Chem., 80, 856 (2008)
  9. V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, J. Biomed. Mater. Res. A, 71, 528 (2004)
  10. K. H. Lee, D. H. Baek, C. S. Ki, and Y. H. Park, Int. J. Biol. Macromol., 41, 168 (2007) https://doi.org/10.1016/j.ijbiomac.2007.01.011
  11. B. J. Park, D. H. Lee, J.-C. Park, I.-S. Lee, K.-Y. Lee, S. O. Hyun, M.-S. Chun, and K.-H. Chung, Phys. Plasmas, 10, 4539 (2003) https://doi.org/10.1063/1.1613655
  12. K.-Y. Lee, B. J. Park, D. H. Lee, I.-S. Lee, S. O. Hyun, K.-H. Chung, and J.-C. Park, Surf. Coat. Technol., 193, 35 (2005) https://doi.org/10.1016/j.surfcoat.2004.07.034
  13. L. Jeong, I. S. Yeo, H. N. Kim, Y. I. Yoon, D. H. Jang, S. Y. Jung, B. M. Min, and W. H. Park, Int. J. Biol. Macromol., 44, 222 (2009) https://doi.org/10.1016/j.ijbiomac.2008.12.008
  14. J. Y. Chen, G. J. Wan, Y. X. Leng, P. Yang, H. Sun, J. Wang, and N. Huang, Surf. Coat. Technol., 186, 270 (2004) https://doi.org/10.1016/j.surfcoat.2004.02.050
  15. T. Yokota, T. Terai, T. Kobayashi, T. Meguro, and M. Iwaki, Surf. Coat. Technol., 201, 8048 (2007) https://doi.org/10.1016/j.surfcoat.2006.03.051
  16. H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003) https://doi.org/10.1038/nature01809
  17. H. Aoki, N. Tomita, Y. Morita, K. Hattori, Y. Harada, M. Sonobe, S. Wakitani, and Y. Tamada, Biomed. Mater. Eng., 13, 309 (2003)
  18. S. Hofmann, S. Knecht, E. Stussi, R. Langer, D. Kaplan, G. Vunjak-Novakovic, H. P. Merkle, and L. Meinel, Tissue Eng., 12, 2729 (2006) https://doi.org/10.1089/ten.2006.12.2729
  19. Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, Biomaterials, 27, 4434 (2006) https://doi.org/10.1016/j.biomaterials.2006.03.050
  20. L. Lin, C. Zhou, X. Wei, Y. Hou, L. Zhao, X. Fu, J. Zhang, and C. Yu, Arthritis Rheum, 58, 1067 (2008) https://doi.org/10.1002/art.23380