Water-Repellent Macroporous Carbon Nanotube/Elastomer Nanocomposites by Self-Organized Aqueous Droplets

  • Lim, Bo-Kyung (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Sun-Hwa (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Ji-Sun (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Sang-Ouk (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST))
  • 발행 : 2009.09.25

초록

Water repellent elastomeric surfaces were fabricated successfully on SBS/MWNT nanocomposites films using the breath figure method and subsequent thermal treatment. The uniformly dispersed CNTs were found to play significant roles in tuning the size and ordering of the macroporous morphology at the nanocomposite surface as well as enhancing the mechanical properties of nanocomposites. In particular, the CNTs dispersed in a nanocomposite solution retarded the coarsening process of aqueous droplets during the breath figure process and decreased the pore size in the finally fabricated film. The water contact angle measurement showed that the double-scale structure comprised of self-organized macropores and surface the roughness induced by a thermal treatment produced a highly water-repellent nanocomposite surface.

키워드

참고문헌

  1. H. Koerner, G. Rice, N. A. Pearce, M. Alexander, and R. A. Vaia, Nature, 3, 115 (2004) https://doi.org/10.1038/nmat1059
  2. L. Bokobza, Polymer, 48, 4907 (2007) https://doi.org/10.1016/j.polymer.2007.06.046
  3. X. B. Xu, Z. M. Li, L. Shi, X. C. Bian, and Z. D. Xiang, Small, 3, 408 (2007) https://doi.org/10.1002/smll.200600348
  4. B. S. Kim, K. D. Suh, and B. Kim, Macromol. Res., 16, 76 (2008) https://doi.org/10.1007/BF03218966
  5. I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee, Macromol. Res., 15, 498 (2007) https://doi.org/10.1007/BF03218822
  6. S. M. Liff, N. Kumer, and G. H. Mckinley, Nature, 6, 76 (2007) https://doi.org/10.1038/nmat1798
  7. R. H. Baughman, Science, 308, 63 (2005) https://doi.org/10.1126/science.1099010
  8. Y. Liu, K. J. Gilmore, J. Chen, V. Misoska, and G. G. Wallace, Chem. Mater., 19, 2721 (2007) https://doi.org/10.1021/cm070002j
  9. R. Vaia, Nature, 4, 429 (2005) https://doi.org/10.1038/nmat1400
  10. S. V. Ahir and E. M. Terentjev, Nature, 4, 491 (2005) https://doi.org/10.1038/nmat1391
  11. H. J. Lee, Y. D. Lee, W. S. Cho, B. K. Ju, Y. H. Lee, J. H. Han, and J. K. Kim, Appl. Phys. Lett., 88, 093115 (2006) https://doi.org/10.1063/1.2179114
  12. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science, 321, 1468 (2008) https://doi.org/10.1126/science.1160309
  13. R. Blossey, Nature, 2, 301 (2003) https://doi.org/10.1038/nmat856
  14. X. Feng and L. Jiang, Adv. Mater., 18, 3063 (2006) https://doi.org/10.1002/adma.200501961
  15. H. Y. Lee, S. A. Yu, K. H. Jeong, and Y. J. Kim, Macromol. Res., 15, 547 (2007) https://doi.org/10.1007/BF03218829
  16. Y. Lee, S. H. Park, K. B. Kim, and J. K. Lee, Adv. Mater., 19, 2330 (2007) https://doi.org/10.1002/adma.200700820
  17. L. Jiang, Y. Zhao, and J. Zhai, Angew. Chem. Int. Ed., 43, 4338 (2004)
  18. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Adv. Mater., 14, 1857 (2002) https://doi.org/10.1002/adma.200290020
  19. Y. Li, C. Li, S. O. Cho, G. Duan, and W. Cai, Langmuir, 23, 9802 (2007) https://doi.org/10.1021/la700847c
  20. Y. Li, W. Z. Jia, Y. Y. Song, and X. H. Xia, Chem. Mater., 19, 5758 (2007) https://doi.org/10.1021/cm071738j
  21. H. Li, Z. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, and D. Zhu, Angew. Chem. Int. Ed., 40, 1743 (2001) https://doi.org/10.1002/1521-3773(20010504)40:9<1743::AID-ANIE17430>3.0.CO;2-#
  22. I. Woodward, W. C. E. Schofield, V. Roucoules, and J. P. S. Badyal, Langmuir, 19, 3432 (2003) https://doi.org/10.1021/la020427e
  23. J. Genzer and K. Efimenko, Science, 290, 2130 (2000) https://doi.org/10.1126/science.290.5499.2130
  24. S. R. Coulson, I. Woodward, and J. P. S. Badyal, J. Phys. Chem. B, 104, 8836 (2000) https://doi.org/10.1021/jp0000174
  25. K. Tadanaga, J. Morinaga, A. Matsuda, and T. Minami, Chem. Mater., 12, 590 (2000) https://doi.org/10.1021/cm990643h
  26. S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim, Macromol. Res., 16, 261 (2008) https://doi.org/10.1007/BF03218862
  27. S. H. Lee, J. S. Park, B. K. Lim, and S. O. Kim, J. Appl. Polym. Sci., 110, 2345 (2008) https://doi.org/10.1002/app.27920
  28. H. T. Ham, I. J. Chung, Y. S. Choi, S. H. Lee, and S. O. Kim, J. Phys. Chem. B, 110, 13959 (2006) https://doi.org/10.1021/jp0616361
  29. J. S. Park, S. H. Lee, T. H. Han, and S. O. Kim, Adv. Funct. Mater., 17, 2315 (2007) https://doi.org/10.1002/adfm.200601141
  30. H. Yabu and M. Shimomura, Chem. Mater., 17, 5231 (2005) https://doi.org/10.1021/cm051281i