Dynamic Mechanical and Morphological Studies of Styrene-co-Methacrylate and Sulfonated Polystyrene Ionomers Containing Aliphatic Dicarboxylate Salts

  • Luqman, Mohammad (Department of Polymer Science & Engineering, and BK21 Education Center of Mould Technology for Advanced Materials & Parts, Chosun University) ;
  • Kim, Joon-Seop (Department of Polymer Science & Engineering, and BK21 Education Center of Mould Technology for Advanced Materials & Parts, Chosun University) ;
  • Shin, Kwan-Woo (Department of Chemistry, Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2009.09.25

Abstract

This study examined the effects of the sodium salts of aliphatic dicarboxylic acids (DCAs) on the dynamic mechanical properties and morphology of two sets of poly(styrene-co-sodium methacrylate) (MNa) and poly(styrene-co-sodium styrenesulfonate) (SNa) ionomers. When the DCA content was relatively low, the ionic moduli of the MNa and SNa ionomers increased but the matrix and cluster glass transition temperature ($T_g$) did not change significantly. The increasing ionic modulus was almost independent of the type of the ionic groups of the ionomer, and the chain length of DCAs. When a large amount of the sodium succinate (DCA4) was added to the MNa and SNa ionomers, the ionic moduli of the two ionomers increased strongly but the matrix and cluster $T_g's$ increased slightly and significantly, respectively. In the case of sodium hexadecanedioate (DCA 16), DCA 16 increased the ionic moduli of the two ionomers. The addition of DCA16 changed the matrix and cluster $T_g's$ of the MNa ionomer slightly, but decreased the cluster $T_g$ of the SNa ionomer significantly with no change in the matrix $T_g$. In addition, the DCA-containing ionomers showed an X-ray diffraction peak indicating the presence of ordered domains of DC As in the ionomers. Hence, DCA4 acts mainly as a reinforcing filler in MNa and SNa systems. In the case of DCA 16, it initially behaved like a filler but also functioned as a preferential plasticizer for the clusters at high content.

Keywords

References

  1. A. Eisenberg and J.-S. Kim, Introduction to Ionomers, Wiley, New York,1998
  2. A. Eisenberg, B. Hird, and R. B. Moore, Macromolecules, 23, 4098 (1990) https://doi.org/10.1021/ma00220a012
  3. M. Plante, C. G. Bazuin, and R. Jerome, Macromolecules, 28, 5240 (1995) https://doi.org/10.1021/ma00119a011
  4. M. Plante and C. G. Bazuin, Macromolecules, 30, 2613 (1997) https://doi.org/10.1021/ma961220t
  5. H. S. Jeon, S. H. Oh, J.-S. Kim, and Y. Lee, Polymer, 44, 4179 (2003) https://doi.org/10.1016/S0032-3861(03)00368-9
  6. K. Wakabayashi and R. A. K. Register, Polymer, 47, 2874 (2006) https://doi.org/10.1016/j.polymer.2006.02.019
  7. J.-W. Kim, J.-S. Kim, and S.-S. Jarng, Polymer, 44, 2993 (2003) https://doi.org/10.1016/S0032-3861(02)00921-7
  8. M. Luqman, J.-M. Song, J.-S. Kim, Y. J. Kwon, S.-S. Jarng, and K. Shin, Polymer, 49, 1871 (2008) https://doi.org/10.1016/j.polymer.2008.02.014
  9. A. Natansohn, C. G. Bazuin, and X. Tong, Can. J. Chem., 70, 2900 (1992) https://doi.org/10.1139/v92-371
  10. Y. H. Nah, H. S. Kim, J.-S. Kim, W. Kim, and Y. Lee, Polym. J., 31, 309 (1999) https://doi.org/10.1295/polymj.31.309
  11. R. F. Storey and D. W. Baugh, Polym. Eng. Sci., 39, 1328 (1999) https://doi.org/10.1002/pen.11520
  12. A. Nishioka, T. Takahashi, Y. Masubuch, J. Takamoto, and K. Koyama, Polymer, 42, 7907 (2001) https://doi.org/10.1016/S0032-3861(01)00268-3
  13. J.-S. Kim, R. J. Jackman, and A. Eisenberg, Macromolecules, 27, 2789 (1994) https://doi.org/10.1021/ma00088a021
  14. H. S. Makowski, R. D. Lundberg, and G. H. Singhal, US Patent 3 870 841 (1975)
  15. J. Yoon, K.-W. Kim, J. Kim, K. Heo, K. S. Jin, S. Jin, T. J. Shin, B. Lee, Y. Rho, B. Ahn, and M. Ree, Macromol. Res., 16, 575 (2008) https://doi.org/10.1007/BF03218563
  16. B. Hird and A. Eisenberg, J. Polym. Sci. Part B: Polym. Phys., 28, 1665 (1990) https://doi.org/10.1002/polb.1990.090281002
  17. C. W. Van Der WaI, H. W. Bree, and F. R. Schwarzl, J. Appl. Polym. Sci., 9, 2143 (1965) https://doi.org/10.1002/app.1965.070090611
  18. P. Cousin and P. Smith, J. Polym. Sci. Part B: Polym. Phys., 32, 459 (1994) https://doi.org/10.1002/polb.1994.090320307
  19. S. Datta, A. K. Bhattacharya, S. K. A. De, E. G. Kontos, and J. M. Wefer, Polymer, 37, 2582 (1996)
  20. S. John, J. Rodney, and R. Roger, J. Appl. Polym. Sci., 68, 1567 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980606)68:10<1567::AID-APP4>3.0.CO;2-F
  21. J.-S. Kim, G. Wu, and A. Eisenberg, Macromolecules, 27, 814 (1994) https://doi.org/10.1021/ma00081a029
  22. Y. Li, D. G. Peiffer, and B. Chu, Macromolecules, 26, 4006 (1993) https://doi.org/10.1021/ma00067a042
  23. D. Q. Wu, B. Chu, R. D. Lundberg, and W. J. MacKnight, Macromolecules, 26, 1000 (1993) https://doi.org/10.1021/ma00057a019
  24. Y. S. Ding, S. R. Hubbard, K. O. Hodgson, R. A. Register, and S. L. Cooper, Macromolecules, 21, 1698 (1998) https://doi.org/10.1021/ma00184a028
  25. Y. Tsujita, M. Yasuda, M. Makei, T. Kinoshita, A. Takizawa, and H. Yoshimizu, Macromolecules, 34, 2220 (2001) https://doi.org/10.1021/ma0003755
  26. D. J. Yarusso and S. L. Cooper, Macromolecules, 16, 1871 (1983) https://doi.org/10.1021/ma00246a013
  27. R. B. Moore, M. Bittencourt, M. Gauthier, C. E. Williams, and A. Eisenberg, Macromolecules, 24, 1376 (1991) https://doi.org/10.1021/ma00006a024
  28. D. G. Peiffer, R. A. Weiss, and R. D. Lundberg, J. Polym. Sci. Polym. Phys. Ed., 20, 1503 (1982) https://doi.org/10.1002/pol.1982.180200815
  29. J. J. Fitzgerald, D. Kim, and R. A. Weiss, J. Polym. Sci. Polym. Lett., 24, 263 (1986)
  30. A. F. Galambos, W. B. Stockton, J. T. Koberstein, A. Sen, R. A. Weiss, and T. P. Russell, Macromolecules, 20, 3091 (1987) https://doi.org/10.1021/ma00178a028
  31. R. A. Register and S. L. Cooper, Macromolecules, 23, 310 (1990) https://doi.org/10.1021/ma00203a053
  32. M. Jiang, A. A. Gronowski, H. L. Yeager, G. Wu, J.-S. Kim, and A. Eisenberg, Macromolecules, 27, 6541 (1994) https://doi.org/10.1021/ma00100a045
  33. J.-S. Kim, H.-S. Kim, Y. H. Nah, and A. Eisenberg, Polym. Bull., 41, 609 (1998) https://doi.org/10.1007/s002890050408
  34. J.-M. Song, M.C. Hong, J.- S. Kim, and J. Yoo, Macromol. Res., 10, 304 (2002) https://doi.org/10.1007/BF03218323
  35. H. S. Jeon and J.- S. Kim, Polym. Bull., 49, 457 (2003) https://doi.org/10.1007/s00289-002-0080-5
  36. N. C. Zhou, C. D. Chan, and K. I. Winey, Macromolecules, 41, 6134 (2008) https://doi.org/10.1021/ma800805m
  37. L. E. Nielsen and R. F. Landel, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, 1994
  38. Y. H. Han, S. O. Han, D. Cho, and H.-I. Kim, Macromol. Res., 16, 253 (2008) https://doi.org/10.1007/BF03218861
  39. E. J. Guth, J. Appl. Phys., 16, 20 (1945) https://doi.org/10.1063/1.1707495
  40. D. R. Lide, Ed., Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1995, Section 3
  41. P. K. Agarwal, H. S. Makowski, and R. D. Lundberg, Macromolecules, 13, 1679 (1980) https://doi.org/10.1021/ma60078a057