DOI QR코드

DOI QR Code

APPROXIMATION TO THE CUMULATIVE NORMAL DISTRIBUTION USING HYPERBOLIC TANGENT BASED FUNCTIONS

  • Yun, Beong-In (SCHOOL OF MATHEMATICS, INFORMATICS AND STATISTICS KUNSAN NATIONAL UNIVERSITY)
  • Published : 2009.11.01

Abstract

This paper presents a method for approximation of the standard normal distribution by using hyperbolic tangent based functions. The presented approximate formula for the cumulative distribution depends on one numerical coefficient only, and its accuracy is admissible. Furthermore, in some particular cases, closed forms of inverse formulas are derived. Numerical results of the present method are compared with those of an existing method.

Keywords

References

  1. R. J. Bagby, Calculating normal probabilities, Amer. Math. Monthly 102 (1995), no. 1, 46-48. https://doi.org/10.2307/2974857
  2. W. Bryc, A uniform approximation to the right normal tail integral, Appl. Math. Comput. 127 (2002), no. 2-3, 365-374. https://doi.org/10.1016/S0096-3003(01)00015-7
  3. D. Elliott, Sigmoidal transformations and the trapezoidal rule, J. Aust. Math. Soc. Ser. B 40 (1998/99), (E), E77-E137.
  4. H. Hamaker, Approximating the cumulative normal distribution and its inverse, Appl. Statist. 27 (1978), 76-77. https://doi.org/10.2307/2346231
  5. R. G. Hart, A closed approximation related to the error function, Math. Comp. 20 (1966), 600-602. https://doi.org/10.2307/2003549
  6. R. G. Kerridge and G. W. Cook, Yet another series for the normal integral, Biometrika 63 (1976), 401-407. https://doi.org/10.1093/biomet/63.2.401
  7. J. T. Lin, A simpler logistic approximation to the normal tail probability and its inverse, J. Roy. Statist. Soc. Ser. C 39 (1990), no. 2, 255-257. https://doi.org/10.2307/2347764
  8. P. A. P. Moran, Caculation of the normal distribution function, Biometrika 67 (1980), 675-676. https://doi.org/10.1093/biomet/67.3.675
  9. R. M. Norton, Pocket-calculator approximation for areas under the standard normal curve, Amer. Statist. 43 (1989), 24-26. https://doi.org/10.2307/2685163
  10. E. Page, Approximation to the cumulative normal function and its inverse for use on a pocket calculator, Appl. Statist. 26 (1977), 75-76. https://doi.org/10.2307/2346872
  11. S. Prossdorf and A. Rathsfeld, On an integral equation of the first kind arising from a cruciform crack problem, Integral equations and inverse problems (Varna, 1989), 210-219, Pitman Res. Notes Math. Ser., 235, Longman Sci. Tech., Harlow, 1991.
  12. T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math. Comp. 18 (1964), 245-253. https://doi.org/10.2307/2003298
  13. J. D. Vedder, An invertible approximation to the normal-distribution function, Comput. Statist. Data Anal. 16 (1993), 119-123. https://doi.org/10.1016/0167-9473(93)90248-R
  14. G. R.Waissi and D. F. Rossin, A sigmoid approximation to the standard normal integral, Appl. Math. Comput. 77 (1996), 91-95. https://doi.org/10.1016/0096-3003(95)00190-5

Cited by

  1. New Sigmoid-like function better than Fisher z transformation vol.45, pp.8, 2016, https://doi.org/10.1080/03610926.2013.771750
  2. On the approximation of the step function by some sigmoid functions vol.133, 2017, https://doi.org/10.1016/j.matcom.2015.11.005
  3. Tail Probability Ratios of Normal and Student’stDistributions vol.43, pp.18, 2014, https://doi.org/10.1080/03610926.2012.701700
  4. The computation of standard normal distribution integral in any required precision based on reliability method pp.1532-415X, 2018, https://doi.org/10.1080/03610926.2018.1433855