
J. Korean Math. Soc. 46 (2009), No. 6, pp. 1207–1218
DOI 10.4134/JKMS.2009.46.6.1207

ON ENERGY ESTIMATES FOR A LANDAU-LIFSCHITZ
TYPE FUNCTIONAL IN HIGHER DIMENSIONS

Longxing Qi and Yutian Lei

Abstract. The authors study the asymptotic behavior of radial mini-
mizers of an energy functional associated with ferromagnets and antifer-
romagnets in higher dimensions. The location of the zeros of the radial
minimizer is discussed. Moreover, several uniform estimates for the radial
minimizer are presented. Based on these estimates, the authors establish
global convergence of radial minimizers.

1. Introduction

Let Br = {x ∈ Rn; |x| < r}(n ≥ 2). Denote

Sn = {x ∈ Rn+1; (x1)2 + (x2)2 + · · ·+ (xn+1)2 = 1}.
Consider the minimizers uε of the energy functional

Eε(u,B1) =
1
n

∫

B1

|∇u|ndx +
1

2εn

∫

B1

(un+1)2dx, (ε > 0),

on the function class W = {u(x) = (sin f(r) x
|x| , cos f(r)) ∈ W 1,n(B1, S

n);
f(1) = π

2 , r = |x|}. Sometimes we write

uε = (u1
ε, u

2
ε, . . . , u

n
ε , un+1

ε ) = (u′ε, u
n+1
ε ).

In the case of n = 2, the functional Eε(u,B) was the Landau-Lifschitz type
introduced in the study of some simplified model of high-energy physics, which
controls the statics of planar ferromagnets and antiferromagnets (see [3, 7]).
The asymptotic behavior of minimizers of Eε(u,B1) has been considered in [3].
In particular, they discussed the asymptotic behavior of the radial minimizer
of Eε(u,B) in §5. When the penalization term 1

2ε2

∫
B1

(u3)2dx is replaced by
1

4ε2

∫
B1

(1−|u|2)2dx and S2 is replaced by R2, the functional becomes the well-
known Ginzburg-Landau energy introduced in the theory of superconductors
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(cf. [1] and the references therein). 19 open problems were proposed in [1].
P. Mironescu studied problem 7 in [2, 6]. Afterwards, the results were extended
to the higher dimensions (cf. [5, Theorem 1.2]). In this paper, we will discuss
this problem for the radial minimizer of the energy functional Eε(u,B1) when
the dimension n ≥ 2.

Similar to the argument of Remark 3 in [5, §3], we also have f ∈ C[0, 1]
and f(0) = 0 as long as u ∈ W . Observing the functional Eε(u,B1), we can
assume f ∈ [0, π

2 ] for simplicity. First we will verify in §2 that the zeros of u′ε
are located near the origin. Next, as in [5, §3], we will also consider whether

Aε =
∫

B1

(1− |u′ε|)α|∇u′ε|ndx,

Bε =
∫

B1

(1− |u′ε|)α|u′ε|α|∇
u′ε
|u′ε|

|ndx,

Cε =
∫

B1

|det(∇u′ε)|dx

have uniform upper estimates for any α > 0. We will prove in §3 the following:

Theorem 1.1. Assume uε is a radial minimizer of Eε(u, B1). Then for any
α > 0, there exists a constant C > 0 which is independent of ε, such that
Aε ≤ C when ε → 0.

Theorem 1.2. Assume uε is a radial minimizer of Eε(u, B1). Then for any
α ≥ 1, there exists a constant C > 0 which is independent of ε, such that
Bε ≤ C when ε → 0.

Theorem 1.3. Assume uε is a radial minimizer of Eε(u,B1). Then there
exists a constant C > 0 which is independent of ε, such that Cε ≤ C when
ε → 0.

According to Theorem 1.2 in [4], it is not difficult to obtain the local con-
vergence:

lim
ε→0

uε(x) =
( x

|x| , 0
)

in W 1,n
loc (B1 \ {0}).

We will set up the global convergence based on the uniform estimates in The-
orems 1.1, 1.2 and 1.3.

Theorem 1.4. Assume uε is a radial minimizer of Eε(u,B1). Then we can
find positive constants L1, L2, L3 which are independent of ε, such that as ε →
0,

(1.1) (1− |u′ε|)α|∇u′ε|n → L1δo, weakly star in C(B1), ∀α > 0,

(1.2) (1− |u′ε|)α|u′ε|α
∣∣∣∇ u′ε
|u′ε|

∣∣∣
n

→ L2δo, weakly star in C(B1), ∀α ≥ 1,

(1.3) | det(∇uε)| → L3δo, weakly star in C(B1),

where δo is the Dirac mass at the origin 0.
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2. Location of zeros

From the direct method in the calculus of variations, it is easy to get:

Lemma 2.1. The radial minimizer uε ∈ W satisfies

(2.1) −div(|∇u|n−2∇u) = u|∇u|n +
1
εn

[u(un+1)2 − un+1en+1] in B1,

in the weak sense, where en+1 = (0, 0, . . . , 0, 1).

Lemma 2.2. Assume uε is a radial minimizer of Eε(u,B1). Then there exists
a constant C > 0 which is independent of ε, such that

(2.2) Eε(u,B1) ≤ 1
n

(n− 1)
n
2 |Sn−1|| ln ε|+ C.

Proof. Set

I(ε,R) = min
{∫

BR

[
1
n
|∇u|n +

1
2εn

(un+1)2
]

dx; uε ∈ W 1,n(BR, Sn)
}

.

Then,

I(ε, 1) = Eε(uε, B1) =
1
n

∫

B1

|∇uε|ndx +
1

2εn

∫

B1

(un+1
ε )2dx

=
1
n

∫

Bε−1

|∇uε|ndy +
1
2

∫

Bε−1

(un+1
ε )2dy = I(1, ε−1).

Assume u1 is a solution to I(1, 1). Define

u2 = u1, x ∈ B1; u2 =
x

|x| , x ∈ Bε−1 \B1.

Since uε is a minimizer, we have Eε(uε, B1) ≤ Eε(u2, B1). Then

I(1, ε−1) ≤ 1
n

∫

Bε−1

|∇u2|ndx +
1
2

∫

Bε−1

(un+1
2 )2dx

=
1
n

∫

B1

|∇u1|ndx +
1
n

∫

Bε−1\B1

∣∣∣∇ x

|x|
∣∣∣
n

dx +
1
2

∫

B1

(un+1
1 )2dx

= I(1, 1) +
1
n

(n− 1)
n
2 |Sn−1|

∫ ε−1

1

1
r
dr

= I(1, 1) +
1
n

(n− 1)
n
2 |Sn−1|| ln ε|

≤ 1
n

(n− 1)
n
2 |Sn−1|| ln ε|+ C.

Substituting this into I(ε, 1) = I(1, ε−1), we have (2.2). �
Lemma 2.3. Assume ε = εk is a subsequence which converges to 0, and uε

is a radial minimizer of Eε(u,B1). Then there exist a positive constant C
independent of ε ∈ (0, 1), and a natural number k0, such that

(2.3)
1
εn
k

∫

B1

(un+1)2dx ≤ C,
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when k > k0.

Proof. We use the idea in [8]. Denote V (ε) = inf Eε(u,B1), u ∈ W . For fixed
u ∈ W , the map ε → Eε(u,B1) is not increasing, and

∂

∂ε
Eε(u, B1) = − n

2εn+1

∫

B1

(un+1)2dx.

Since V (ε + δ) ≤ Eε+δ(u,B1) ≤ Eε(u,B1) = V (ε) for the minimizer u = uε of
Eε(u, B1),

n

2εn+1

∫

B1

(un+1)2dx

= lim
δ→0

Eε(u,B1)− Eε+δ(u,B1)
δ

≤ limδ→0
V (ε)− V (ε + δ)

δ
= − V ′(ε).

We claim that there exists a subsequence of εk, which is still written as εk,
such that

−εkV ′(εk) ≤ M (εk → 0),

where M ≥ 1
n (n− 1)

n
2 |Sn−1|. Otherwise, we suppose that there exists ε0 > 0

such that −V ′(ε) > M
ε . Integrating over (ε, ε0), we obtain

V (ε) ≥ V (ε0)−
∫ ε0

ε

V ′(ε)dx > M | ln ε| − C,

which contradicts (2.2) as long as ε is small enough. �

Lemma 2.4. Assume uε is a radial minimizer of Eε(u,B1). Then there exist
positive constants λ, µ which are independent of ε ∈ (0, 1), such that if

(2.4)
1
εn

∫

B1∩B2lε

(un+1
ε )2dx ≤ µ,

where B2lε is some ball of radius 2lε with l > λ, then

|u′ε(x)| ≥ 1
2
, ∀x ∈ B1 ∩Blε.

Proof. We use the idea in [1]. First, we observe that there exists a constant
C2 > 0, such that for any x ∈ B1, |B1 ∩ B(x, r)| ≥ C2r

n. To prove the
conclusion, we will use a consequence in [4, §2]. Choose λ = 1

4C1
, µ = C2

16 λn,
where C1 is the constant in (2.11) of [4]. Suppose that there is a point x0 ∈
B1 ∩Blε, such that |u′ε(x0)| < 1

2 . By (2.11) in [4], ∀x ∈ B(x0, λε),

|u′ε(x)− u
′
ε(x0)| ≤ C1ε

−1|x− x0| ≤ C1ε
−1(λε) = C1λ =

1
4
.
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Hence (un+1
ε )2 = 1− (u

′
ε)2 > 1

16∀x ∈ B(x0, λε), and

(2.5)
∫

B1∩B(x0,λε)

(un+1
ε )2dx >

1
16
|B1 ∩B(x0, λε)| > C2 × 1

16
× (λε)n = µεn.

Since x0 ∈ B1 ∩Blε and (B1 ∩B(x0, λε)) ⊂ (B1 ∩B2lε), (2.5) implies

1
εn

∫

B1∩B2lε

(un+1
ε )2dx > µ,

which contradicts (2.4) and thus Lemma 2.4 is proved. �

Let uε be a radial minimizer of Eε(u,B1). α and µ are the constants in
Lemma 2.4. If

1
εn

∫

B1∩B2λε

(un+1
ε )2dx ≤ µ,

then B(xε, λε) is called a good ball. Otherwise B(xε, λε) is called a bad ball.
Now suppose that B(xε

i , λε); i ∈ I is a family of balls satisfying

(2.6)
(i) xε

i ∈ B1, i ∈ I; (ii) B1 ⊂ ∪i∈IB(xε
i , λε);

(iii) B(xε
i ,

λ

4
ε) ∩B(xε

j ,
λ

4
ε) = ∅, i 6= j.

Denote Jε = {i ∈ I; B(xε
i , λε) is a bad ball}.

Lemma 2.5. There exists a positive integer N independent of ε ∈ (0, 1), such
that the number of bad balls CardJε ≤ N .

Proof. In fact, (2.6) implies that every point in B1 can be covered by finite,
say m (independent of ε) balls. From (2.3) and the definition of bad balls, we
have

µεnCardJε ≤
∑

i∈Jε

∫

B1∩B(xε
i ,2λε)

(un+1
ε )2dx

≤ m

∫

∪i∈Jε B1∩B(xε
i ,2λε)

(un+1
ε )2dx

≤ m

∫

B1

(un+1
ε )2dx

≤ mCεn

and hence CardJε ≤ mC
µ ≤ N . �

Similar to the argument of [1, Theorem IV.1], based on Lemma 2.5 we also
have the following lemma:

Lemma 2.6. There exist a subset J ⊂ Jε and a constant h ≥ λ, such that
⋃

i∈Jε

B(xε
i , λε) ⊂

⋃

i∈J

B(xε
j , hε) |xε

i − xε
j | > 8hε, i, j ∈ J, i 6= j.
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Applying Lemma 2.6, we may modify the family of bad balls such that the
new one, denoted by B(xε

i , hε); i ∈ J , satisfies
⋃

i∈Jε

B(xε
i , λε) ⊂

⋃

i∈J

B(xε
j , hε),

CardJ ≤ CardJε,

|xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j.

The last condition implies that every two balls in the new family are not inter-
sected.

Theorem 2.7. Let uε be a radial minimizer of Eε(u,B1). Then there exists a
h > 0 independent of ε ∈ (0, 1), such that

Zε = {x ∈ B1; |u′ε(x)| < 1
2
} ⊂ Bhε.

Proof. Suppose there exists a point x0 ∈ Zε such that x0 6∈ Bhε. Then all
points on the circle S0 = {x ∈ B1; |x| = |x0|} satisfy |u′ε(x)| < 1

2 , and hence by
virtue of Lemma 2.4 and (2.6), all points on S0 are contained in bad balls. On
the other hand, since |x0| ≥ hε, S0 cannot be covered by a single bad ball, i.e.,
S0 is covered by at least two bad balls (which are not intersected). However,
this is impossible. Theorem 2.7 is proved. �

This theorem means that the zeros of uε are contained in Bhε. When ε → 0,
the zeros converge to the origin 0.

3. Proof of theorems

Lemma 3.1. Let R ∈ ( 1
3 , 1

2 ). Then there exists a constant C > 0 independent
of ε, such that

(3.1)
∫

BR\Bhε

∣∣∣∇ x

|x|
∣∣∣
n

dx ≥ (n− 1)
n
2 |Sn−1|| ln ε| − C,

when ε is sufficiently small.

Proof. Clearly,
∫

BR\Bhε

∣∣∣∇ x

|x|
∣∣∣
n

dx = (n− 1)
n
2 |Sn−1|

∫ R

hε

1
r
dr ≥ (n− 1)

n
2 |Sn−1|| ln ε| − C.

�

Lemma 3.2. For any α > 0, there exists a constant C > 0 independent of ε,
such that

(3.2)
∫

BR\Bhε

(1− sin f)α
∣∣∣∇ x

|x|
∣∣∣
n

dx ≤ C.

Proof. For ∀α > 0, we choose q = 1
α . Applying (2.3), we obtain

1
εn

∫ 1

0

(1− sin2 f)qαrn−1dr ≤ 1
εn

∫ 1

0

(cos2 f)rn−1dr ≤ C.
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When α ∈ (0, 1), we can deduce from (2.3) that
∫

BR\Bhε

(1− sin f)α
∣∣∣∇ x

|x|
∣∣∣
n

dx

≤ C

∫ R

hε

(1− sin f)α rn−1

rn
dr

≤ C
[ 1
εn

∫ 1

0

(1− sin2 f)qαrn−1dr
] 1

q

ε
n
q

[ ∫ R

hε

r
q+n−1

1−q dr
]1− 1

q

≤ Cε
n
q [ε

n
1−q − C(R)]1−

1
q

≤ Cε
n
q ε−

n
q = C.

When α ≥ 1, it is easy to deduce (3.2) by the argument above. �

Lemma 3.3. There exists a constant C > 0 which is independent of ε, such
that
(3.3)∫

B1

cosn f |∇f |ndx +
∫

Bhε

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx +
∫

B1\BR

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx ≤ C.

Proof. From Lemma 2.2, we have
∫

B1

|∇u′ε|ndx ≤ (n− 1)
n
2 |Sn−1|| ln ε|+ C.

Noting

∇u′ε = ∇(sin f
x

|x| ) = ∇(sin f)
x

|x| + sin f∇ x

|x| = cos f∇f
x

|x| + sin f∇ x

|x| .

We obtain from Jensen’s inequality that
(3.4) ∫

B1

cosn f |∇f |ndx +
∫

Bhε

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx +
∫

B1\Bhε

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx

≤ (n− 1)
n
2 |Sn−1|| ln ε|+ C.

(3.4) subtracts (3.1). Then we can deduce that
∫

B1

cosn f |∇f |ndx +
∫

Bhε

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx +
∫

B1\BR

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx

−
∫

BR\Bhε

(1− sinn f)
∣∣∣∇ x

|x|
∣∣∣
n

dx ≤ C.

Using Lemma 3.2, we get
∫

B1

cosn f |∇f |ndx +
∫

Bhε

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx +
∫

B1\BR

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx ≤ C.
�
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Proof of Theorem 1.1. From Lemma 3.3, we deduce that
(3.5)∫

(B1\BR)∪Bhε

(1− |u′ε|)α|∇u′ε|ndx

=
∫

(B1\BR)∪Bhε

(1− sin f)α
∣∣∣∇(sin f

x

|x| )
∣∣∣
n

dx

≤
∫

(B1\BR)∪Bhε

∣∣∣∇(sin f)
x

|x| + sin f∇ x

|x|
∣∣∣
n

dx

≤ C

∫

(B1\BR)∪Bhε

(cosn f |∇f |n + sinn f
∣∣∣∇ x

|x|
∣∣∣
n

)dx

≤ C(
∫

B1

cosn f |∇f |ndx +
∫

Bhε

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx +
∫

B1\BR

sinn f
∣∣∣∇ x

|x|
∣∣∣
n

dx)

≤ C.

By Lemma 3.2 and Lemma 3.3, we obtain

(3.6)

∫

BR\Bhε

(1− |u′ε|)α|∇u′ε|ndx

=
∫

BR\Bhε

(1− sin f)α
∣∣∣∇(sin f

x

|x| )
∣∣∣
n

dx

≤ C(
∫

BR\Bhε

cosn f |∇f |ndx +
∫

BR\Bhε

(1− sin f)α
∣∣∣∇ x

|x|
∣∣∣
n

dx) ≤ C.

Combining (3.5) with (3.6) yields

Aε =
∫

B1

(1− |u′ε|)α|∇u′ε|ndx ≤ C.

Theorem 1.1 is complete. �

Proof of Theorem 1.2. Obviously,

Bε =
∫

B1

(1− |u′ε|)α|u′ε|α
∣∣∣∇ u′ε
|u′ε|

∣∣∣
2

dx =
∫

B1

(1− sin f)α sinα f
∣∣∣∇ x

|x|
∣∣∣
n

dx

≤
∫

B1

(1− sin2 f)α sinα f
∣∣∣∇ x

|x|
∣∣∣
n

dx =
∫

B1

cos2α f sinα f
∣∣∣∇ x

|x|
∣∣∣
n

dx

= (n− 1)
n
2 |Sn−1|

∫ 1

0

cos2α f sinα f
1
r
dr

= (n− 1)
n
2 |Sn−1|

∫ δ

0

cos2α f sinα f
1
r
dr + (n− 1)

n
2 |Sn−1|

∫ 1

δ

cos2α f sinα f
1
r
dr

≤ (n− 1)
n
2 |Sn−1|

∫ δ

0

(cos2α f)fα 1
r
dr + C(δ).



ON ENERGY ESTIMATES 1215

When α ∈ (1, n], by the mean value theorem and f(0) = 0, there exists
ξ ∈ (0, 1) such that

1
r

sinα f ≤ | cos f(ξr)|α|f ′(ξr)|αrα−1 ≤ C| cos f(ξr)|α|∇f(ξr)|αrα−1.

Thus, we have

Bε ≤ (n− 1)
n
2 |Sn−1|

∫ δ

0

cos2α f |∇f |αrα−1dr + C

≤ C
[ ∫ δ

0

cosn f(ξr)|∇f(ξr)|nrn−1dr
]α

n
[ ∫ δ

0

r
α−n
n−1 dr

]n−1
n

+ C

≤ Cξ
α(1−n)

n

[ ∫ ξδ

0

cosn f |∇f |nsn−1ds
]α

n
(n− 1

α− 1
r

α−1
n−1 |δ0

)n−1
n

+ C

≤ C

∫

B1

cosn f |∇f |ndx + C.

From Lemma 3.3, we obtain Bε ≤ C.
When α = 1, the conclusion is easy to be obtained by the argument above.

When α > n, we can set α = n + β. Thus by the mean value theorem and
f(0) = 0, there exists ξ ∈ (0, 1) such that

1
r

sinn f ≤ | cos f(ξr)|n|f ′(ξr)|nrn−1.

Hence, we can deduce that, by using Lemma 3.3,
∫ δ

0

(cos2α f)fα 1
r
dr

≤
∫ δ

0

(cos2α f)fβ | cos f(ξr)|n|f ′(ξr)|nrn−1dr

≤
∫ δ

0

| cos f(ξr)|n|f ′(ξr)|nrn−1dr ≤ C.

The rest proof is easy to be completed. �

The proof of Theorem 1.3.

det(∇u′ε) =

∣∣∣∣∣∣∣∣∣∣

(sin f x1
|x| )x1 (sin f x2

|x| )x1 · · · (sin f xn

|x| )x1

(sin f x1
|x| )x2 (sin f x2

|x| )x2 · · · (sin f xn

|x| )x2

· · · · · · · · · · · ·
(sin f x1

|x| )xn (sin f x2
|x| )xn · · · (sin f xn

|x| )xn

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

cos ffx1
x1
|x| + sin f

|x|2−x2
1

|x|3 cos ffx1
x2
|x| − sin f x1x2

|x|3 · · · cos ffx1
xn

|x| − sin f x1xn

|x|3

cos ffx2
x1
|x| − sin f x1x2

|x|3 cos ffx2
x2
|x| + sin f

|x|2−x2
2

|x|3 · · · cos ffx2
xn

|x| − sin f x2xn

|x|3
· · · · · · · · · · · ·

cos ffxn

x1
|x| − sin f x1xn

|x|3 cos ffxn

x2
|x| − sin f x2xn

|x|3 · · · cos ffxn

xn

|x| + sin f
|x|2−x2

n

|x|3

∣∣∣∣∣∣∣∣∣∣

.
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It is easy to derive that
(3.7)

|det(∇u′ε)|

≤ cosn f |∇f |n + cosn−1 f |∇f |n−1 sin f
1
|x| + cosn−2 f |∇f |n−2 sin2 f

1
|x|2

+ · · ·+ cos f |∇f | sinn−1 f
1

|x|n−1
+ sinn f

1
|x|n

≤ cosn f |∇f |n + cosn−1 f |∇f |n−1 f

r
+ cosn−2 f |∇f |n−2 f2

r2

+ · · ·+ cos f |∇f |f
n−1

rn−1
+

fn

rn
.

Similar to the derivation of Theorem 1.2, using the mean value theorem, we
derive

|det(∇u′ε)| ≤ cosn f |∇f |n + cosn−1 f |∇f |n + cosn−2 f |∇f |n + · · ·+
+cos f |∇f |n + |∇f |n.

Noting cos f(0) = cos 0 = 1 and cos f is continuous near the zero, we know
that there exists δ > 0, such that when r ∈ (0, δ),

| cos f(r)− cos f(0)| ≤ 1
2 ⇒ cos f(r) ≥ cos f(0)− 1

2 = 1
2

⇒ cosi f(r) ≤ C cosn f(r), i = 1, 2, . . . , n− 1.

From this result, (3.7) and Hölder’s inequality, we can deduce that

Cε =
∫

B1

|det(∇u′ε)|dx

≤ C(n, δ)
∫

B1\Bδ

cosn f |∇f |ndx + C

∫

Bδ

cosn f |∇f |ndx

≤ C + C

∫

B1

cosn f |∇f |ndx

≤ C.

Theorem 1.3 is complete. �

Proof of Theorem 1.4. Theorem 1.1 means that the L1(B1)-norm of

(1− |u′ε|)α|∇u′ε|n

is bounded. Therefore, there exists a Radon measure µ1 such that

lim
ε→0

(1− |u′ε|)α|∇u′ε|n = µ1 weakly star in C(B1).

Similar to the derivation (3.3) in [5], from (3.3) and (2.3) it also follows

lim
ε→0

∫

B1\BR

(1− |u′ε|)α|∇u′ε|ndx = 0
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for any R > 0, and hence supp(µ1) = {0}. Thus, we can find L1 ∈ [0,∞) such
that

µ1 = L1δo.

We claim L1 > 0. In fact, by virtue of f(r) ∈ C[0, 1] and f(0) = 0, f(hε) ≥ 1/2
which can be seen by Theorem 2.7, there must exists rε ∈ (0, hε) such that
f(rε) = 1/4. Using (2.11) in [4], we can find a sufficiently small positive
constant δ which is independent of ε, such that

1
8
≤ f(x) ≤ 3

8
, r ∈ (rε − δε, rε + δε).

Therefore, ∫

B(0,rε+δε)\B(0,rε+δε)

(1− sin f)α|∇uε|ndx

≥ |Sn−1|(sin 1
8
)2(1− sin

3
8
)α

∫ rε+δε

rε−δε

dr

r
> 0.

This implies L1 > 0. Eq.(1.1) is proved.
By the same argument of above, (1.2) can also be verified.
Next, Theorem 1.3 means that the L1(B1)-norm of | det(∇u′ε)| is bounded.

Therefore, there exists a Radon measure µ3 such that

lim
ε→0

|det(∇u′ε)| = µ3 weakly star in C(B1).

By an analogous argument of Remarks 2 and 3 in [5, pp. 131–133], we can also
find L3 ∈ (0,∞) such that

µ3 = L3δo.

Then (1.3) is proved and Theorem 1.4 is complete. �
Acknowledgements. The authors would like to thank the referee(s) for the
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