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REPRESENTATIONS OF THE MOORE-PENROSE INVERSE
OF 2 × 2 BLOCK OPERATOR VALUED MATRICES

Chun Yuan Deng and Hong Ke Du

Abstract. We obtain necessary and sufficient conditions for 2× 2 block
operator valued matrices to be Moore-Penrose (MP) invertible and give
new representations of such MP inverses in terms of the individual blocks.

1. Introduction

The Moore-Penrose inverse (for short MP inverse) has proved helpful in
systems theory, difference equations, differential equations and iterative proce-
dures. It would be useful if these results could be extended to infinite dimen-
sional situations. Applications could then be made to denumerable systems
theory, abstract Cauchy problems, infinite systems of linear differential equa-
tions, and possibly partial differential equations and other interesting subjects
(see, for example [1, 2] and [7, 8]).

Let H and K be separable, infinite dimensional and complex Hilbert spaces.
Denote by B(H,K) the set of all bounded linear operators from H into K. For
an operator A ∈ B(H,K), R(A), N (A) and A∗ denote the range, the null space
and the adjoint of A, respectively. The identity onto a closed subspace M is
denoted by IM or I if there is no confusion. For T ∈ B(H,K), if there exists
an operator T+ ∈ B(K,H) satisfying the following four operator equations

(1) TT+T = T, T+TT+ = T+, TT+ = (TT+)∗, T+T = (T+T )∗,

then T+ is called the MP inverse of T . It is well known that T has the MP
inverse if and only if R(T ) is closed and the MP inverse of T is unique (see
[8, 11, 16]).

In recent years, representations and characterizations of the MP inverse for
matrices or operators on a Hilbert space have been considered by many authors
(see [1, 2], [5], [8, 9, 10, 11, 12, 13, 14, 15, 16]). In this paper, we are mainly
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interested in MP invertibilities and representations of the MP inverse for 2× 2
block operator valued matrices with specified properties on a Hilbert space.
Applying these results, we can obtain the MP inverses of 2× 2 block operator
valued matrices with specified properties.

2. Some lemmas

In this section we shall give some lemmas.

Lemma 1 ([3, 4]). Let A ∈ B(H,K) have a closed range. Then A has the form

(2) A =
(

A1 0
0 0

)
:
( R(A∗)

N (A)

)
→
( R(A)
N (A∗)

)
,

where A1 is invertible. In this case A+ = A−1
1 ⊕ 0.

Lemma 2 ([6, 9]). Let A and B be in B(H). Then
(1) R(A) +R(B) = R((AA∗ + BB∗)

1
2 ).

(2) R(A) is closed if and only if R(A) = R(AA∗).
(3) If A ≥ 0 is a positive operator in B(H), then R(A

1
2 ) = R(A).

Lemma 3. The 2× 2 block operator valued matrix
(

A B
0 0

)
is MP invertible if

and only if R(A) +R(B) is closed, and

(3)
(

A B
0 0

)+

=
(

A∗(AA∗ + BB∗)+ 0
B∗(AA∗ + BB∗)+ 0

)
.

Proof. Put T =
(

A B
0 0

)
. Then R(T ) = R(A) +R(B) = R(AA∗+ BB∗)

1
2 .

This implies that R(T ) is closed if and only if R(AA∗ + BB∗) is closed by
Lemma 2. So (AA∗ + BB∗)+ exists if T+ exists. From T+ = T ∗(TT ∗)+ we
have

T+ =
(

A∗ 0
B∗ 0

)(
(AA∗ + BB∗)+ 0

0 0

)
=
(

A∗(AA∗ + BB∗)+ 0
B∗(AA∗ + BB∗)+ 0

)
. �

Additionally, we include some formulae here for later use.

Corollary 4. (1) The 2 × 2 block operator valued matrix
(

A 0
B 0

)
is MP in-

vertible if and only if R(A∗) +R(B∗) is closed, and

(4)
(

A 0
B 0

)+

=
(

(A∗A + B∗B)+A∗ (A∗A + B∗B)+B∗

0 0

)
.

(2) The 2 × 2 block operator valued matrix
(

0 0
B A

)
is MP invertible if and

only if R(A) +R(B) is closed, and

(5)
(

0 0
B A

)+

=
(

0 B∗(AA∗ + BB∗)+

0 A∗(AA∗ + BB∗)+

)
.
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Let A ∈ B(H), B ∈ B(K) and C ∈ B(K,H). The next lemma gives the
MP inverse representation of the 2× 2 block upper triangular operator valued
matrix

(
A C
0 B

)
in the case that A or B is invertible.

Lemma 5. Let A ∈ B(H), B ∈ B(K), C ∈ B(K,H) and B be invertible. Then
the 2 × 2 block operator valued matrix

(
A C
0 B

)
is MP invertible if and only if

R(A) is closed, and
(

A C
0 B

)+

=
(

A+ −A+C4C∗(I −AA+) −A+C4B∗

4C∗(I −AA+) 4B∗

)
,

where 4 = (B∗B + C∗(I −AA+)C)−1.

Proof. First, by Corollary 4, for an arbitrary invertible operator M ,
(

0 N
0 M

)

is MP invertible and
(

0 N
0 M

)+

=

((
0 0

N∗ M∗

)+
)∗

=
(

0 0
(N∗N + M∗M)−1N∗ (N∗N + M∗M)−1M∗

)
.

Second, let B be invertible. Since R(A) is closed,
(

A C
0 B

)
has the form

(
A C
0 B

)
=




0 0 C1

0 A1 C2

0 0 B


 :




N (A)
R(A∗)
K


→



N (A∗)
R(A)
K


 ,

where A1 as an operator from R(A∗) onto R(A) is invertible. Now, let N =
(0, C1), M =

(
A1 C2

0 B

)
and4 = (B∗B+C∗(I−AA+)C)−1 = (B∗B+C∗1C1)−1.

It is easy to check that
(

A C
0 B

)+

=
(

0 0
(N∗N + M∗M)−1N∗ (N∗N + M∗M)−1M∗

)

=




0 0 0
−A−1

1 C24C∗1 A−1
1 −A−1

1 C24B∗

4C∗1 0 4B∗




=
(

A+ −A+C4C∗(I −AA+) −A+C4B∗

4C∗(I −AA+) 4B∗

)
. �

Similar to the proof of Lemma 5, we have the following result.

Lemma 6. Let A ∈ B(H), C ∈ B(K,H), B ∈ B(K) and A be invertible. Then
the 2 × 2 block operator valued matrix

(
A C
0 B

)
is MP invertible if and only if

R(B) is closed, and
(

A C
0 B

)+

=
(

A∗4 −A∗4CB+

(I −B+B)C∗4 B+ − (I −B+B)C∗4CB+

)
,
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where 4 = (AA∗ + C(I −B+B)C∗)−1.

Lemma 7. Let A ∈ B(H), B ∈ B(H,K), C ∈ B(K,H) and B be invertible.
Then the 2 × 2 block operator valued matrix

(
A C
B 0

)
is MP invertible if and

only if R(C) is closed, and
(

A C
B 0

)+

=
( 4A∗(I − CC+) 4B∗

C+ − C+A4A∗(I − CC+) −C+A4B∗

)
,

where 4 = (B∗B + A∗(I − CC+)A)−1.

3. The MP inverses of 2 × 2 block operator valued matrices

In this section we will give the MP inverse representations of 2 × 2 block
operator valued matrix

(6) M =
(

A B
C D

)
,

where A ∈ B(H), D ∈ B(K), B ∈ B(K,H) and C ∈ B(H,K).
Let us recall that operators S, T ∈ B(H,K) are said to be ∗-orthogonality,

denoted by S ⊥∗ T , whenever ST ∗ = 0 and S∗T = 0 (see [4]). If S ⊥∗ T , then
it is easy to check that (S + T )+ = S+ + T+. From this result we can get the
following results.

Theorem 8. Let M be defined as Eqn.(6).
(1) If AC∗+BD∗ = 0, R(A)+R(B) and R(C)+R(D) are closed, then M

is MP invertible and

M+ =
(

A∗(AA∗ + BB∗)+ C∗(DD∗ + CC∗)+

B∗(AA∗ + BB∗)+ D∗(DD∗ + CC∗)+

)
.

(2) If A∗B +C∗D = 0, R(A∗)+R(C∗) and R(B∗)+R(D∗) are closed, then
M is MP invertible and

M+ =
(

(A∗A + C∗C)+A∗ (A∗A + C∗C)+C∗

(D∗D + B∗B)+B∗ (D∗D + B∗B)+D∗

)
.

Proof. Let

S =
(

A B
0 0

)
, T =

(
0 0
C D

)
.

Since R(A) +R(B) and R(C) +R(D) are closed, by Lemma 3 and Corollary
4 we have

S+ =
(

A∗(AA∗ + BB∗)+ 0
B∗(AA∗ + BB∗)+ 0

)
, T+ =

(
0 C∗(DD∗ + CC∗)+

0 D∗(DD∗ + CC∗)+

)
.

From AC∗ + BD∗ = 0 we get that S ⊥∗ T. So

M+ =
(

A∗(AA∗ + BB∗)+ C∗(DD∗ + CC∗)+

B∗(AA∗ + BB∗)+ D∗(DD∗ + CC∗)+

)
.

(2) Similar to the proof of (1), the details are omitted. �
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If we set S′ =
(

A B
0 D

)
and T ′ =

(
0 0
C 0

)
such that S′ ⊥∗ T ′, we can get the

following results.

Theorem 9. Let M be defined as Eqn.(6), R(A), R(D) be closed such that
AC∗ = 0 and D∗C = 0.

(1) If R(A)∩R(B) = {0}, then M is MP invertible if and only if R(C) and
R(B0) are closed and

M+ =
(

A+ C+

B+
0 + (D+D + B+

0 B0 −B+
0 B)4(B −B0)∗(I −B0B

+
0 ) (D+D + B+

0 B0 −B+
0 B)4D∗

)
,

where 4 = (D∗D + (B − B0)∗(I − B0B
+
0 )(B − B0))+, B0 = (I − AA+)B(I −

D+D).
(2) If R(D∗) ∩ R(B∗) = {0}, then M is MP invertible if and only if R(C)

and R(B0) are closed and

M+ =
(

A∗4(AA+ + B0B
+
0 −BB+

0 ) C+

B+
0 + (I −B+

0 B0)(B −B0)∗4(AA+ + B0B
+
0 −BB+

0 ) D+

)
,

where 4 = (AA∗ + (B − B0)(I − B+
0 B0)(B − B0)∗)+, B0 = (I − AA+)B(I −

D+D).
(3) If R(A) ∩ R(B) = {0} and R(D∗) ∩ R(B∗) = {0}, then M is MP

invertible if and only if R(C) and R(B) are closed and
(

A B
C D

)+

=
(

A+ C+

B+ D+

)
.

Proof. (1) Since R(A) ∩ R(B) = {0}, R(A) and R(D) are closed, S′ has the
form
(7)

S′ =
(

A B
0 D

)
=




0 0 B1 B2

0 A1 0 0
0 0 D1 0
0 0 0 0


 :




N (A)
R(A∗)
R(D∗)
N (D)


→




N (A∗)
R(A)
R(D)
N (D∗)


 .

From Lemma 3 and Lemma 7 we know that S′ is MP invertible if and only if

R(B2) = R((I −AA+)B(I −D+D))

is closed and
(

A B
0 D

)+

=
(

0 0
T + 0

)
, where T =




0 B1 B2

A1 0 0
0 D1 0


.

If we replace A,B and C by (0, B1), A1⊕D1 and B2 in Lemma 5, respectively,
then we have

T + =




0 A−1
1 0

4′B∗
1(I −B2B

+
2 ) 0 4′D∗

1

B+
2 −B+

2 B14′B∗
1(I −B2B

+
2 ) 0 −B+

2 B14′D∗
1


 ,
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where 4′ = (D∗
1D1 + B∗

1(I −B2B
+
2 )B1)−1. Hence

(
A B
0 D

)+

=




0 0 0 0
0 A−1

1 0 0
4′B∗

1(I −B2B
+
2 ) 0 4′D∗

1 0
B+

2 −B+
2 B14′B∗

1(I −B2B
+
2 ) 0 −B+

2 B14′D∗
1 0




=




A+ 0
B+

0 + (D+D + B+
0 B0−

B+
0 B)4(B −B0)∗(I −B0B

+
0 ) (D+D + B+

0 B0 −B+
0 B)4D∗


 ,

where 4 = (D∗D + (B −B0)∗(I −B0B
+
0 )(B − B0))+, B0 = (I − AA+)B(I −

D+D).
Since AC∗ = 0, D∗C = 0, we have S′ ⊥∗ T ′. So
(

A B
C D

)+

=
(

A B
0 D

)+

+
(

0 0
C 0

)+

=




A+ C+

B+
0 + (D+D + B+

0 B0−
B+

0 B)4(B −B0)∗(I −B0B
+
0 ) (D+D + B+

0 B0 −B+
0 B)4D∗


 .

(2) Similar to the proof of (1), the details are omitted.
(3) Note that if R(A)∩R(B) = {0} and R(D∗)∩R(B∗) = {0}, then B1 = 0

in Eqn.(7). �

If we set S0 =
(

A B
C 0

)
and T0 =

(
0 0
0 D

)
such that S0 ⊥∗ T0, we can

get the following results.

Theorem 10. Let M be defined as Eqn.(6), R(B), R(C) be closed such that
BD∗ = 0 and C∗D = 0.

(1) If R(A) ∩ R(B) = {0}, then M is MP invertible if and only if R(A0)
and R(D) are closed and

M+ =




A+
0 + (C+C + A+

0 A0−
A+

0 A)40(A−A0)∗(I −A0A
+
0 ) (C+C + A+

0 A0 −A+
0 A)40C

∗

B+ D+


 ,

where 40 = (C∗C + (A−A0)∗(I −A0A
+
0 )(A−A0))+, A0 = (I −BB+)A(I −

C+C).
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(2) If R(A∗) ∩R(C∗) = {0}, then M is MP invertible if and only if R(A0)
and R(D) are closed and

M+ =
(

A+
0 + (I −A+

0 A0)(A−A0)∗40(BB+ + A0A
+
0 −AA+

0 ) C+

B∗40(BB+ + A0A
+
0 −AA+

0 ) D+

)
,

where 4 = (BB∗ + (A− A0)(I − A0A
+
0 )(A− A0)∗)+, A0 = (I − BB+)A(I −

C+C).
(3) If R(A) ∩ R(B) = {0} and R(A∗) ∩ R(C∗) = {0}, then M is MP

invertible if and only if R(A) and R(D) is closed and
(

A B
C D

)+

=
(

A+ C+

B+ D+

)
.

Proof. (1) Since R(A) ∩ R(B) = {0}, R(B) and R(C) are closed, S0 has the
form
(8)

S0 =
(

A B
C 0

)
=




A1 A2 0 0
0 0 B1 0
0 C1 0 0
0 0 0 0


 :




N (C)
R(C∗)
R(B∗)
N (B)


→




N (B∗)
R(B)
R(C)
N (C∗)


 .

From Lemma 5 we have S0 is MP inverse if and only if

R(A1) = R((I −BB+)A(I − C+C))

is closed and
(

A B
C 0

)+

=
( T +

0 0
0 0

)
, where T0 =




A1 A2 0
0 0 B1

0 C1 0


. By Lemma 5 we

have

T +
0 =




A+
1 −A+

1 A24′
0A

∗
2(I −A1A

+
1 ) 0 −A+

1 A24′
0C

∗
1

4′
0A

∗
2(I −A1A

+
1 ) 0 4′

0C
∗
1

0 B−1
1 0


 ,

where 4′
0 = (C∗1C1 + A∗2(I −A1A

+
1 )A2)−1. Hence

(
A B
C 0

)+

=




A+
1 −A+

1 A24′
0A

∗
2(I −A1A

+
1 ) 0 −A+

1 A24′
0C

∗
1 0

4′
0A

∗
2(I −A1A

+
1 ) 0 4′

0C
∗
1 0

0 B−1
1 0 0

0 0 0 0




=




A+
0 + (C+C + A+

0 A0−
A+

0 A)40(A−A0)∗(I −A0A
+
0 ) (C+C + A+

0 A0 −A+
0 A)40C

∗

B+ 0


 ,

where 40 = (C∗C + (A−A0)∗(I −A0A
+
0 )(A−A0))+, A0 = (I −BB+)A(I −

C+C).
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Since BD∗ = 0 and C∗D = 0, we have S0 ⊥∗ T0. So
(

A B
C D

)+

=
(

A B
C 0

)+

+
(

0 0
0 D

)+

=




A+
0 + (C+C + A+

0 A0−
A+

0 A)40(A−A0)∗(I −A0A
+
0 ) (C+C + A+

0 A0 −A+
0 A)40C

∗

B+ D+


 .

Similarly, we can prove (2) and (3), so the details are omitted. �

Let A and D be MP invertible. Denoted by

X1 = R(A∗), X2 = N (A), X3 = R(D∗), X4 = N (D),

Y1 = R(A), Y2 = N (A∗), Y3 = R(D), Y4 = N (D∗)
and

I0 = I ⊕
(

0 I
I 0

)
⊕ I.

Then M as an operator from
∑4

i=1 Xi into
∑4

i=1 Yi has the following operator
matrix form

(9) M =




A1 0 B1 B3

0 0 B4 B2

C1 C3 D1 0
C4 C2 0 0


 = I∗0




A1 B1 0 B3

C1 D1 C3 0
0 B4 0 B2

C4 0 C2 0


 I0.

where A1 and D1 are invertible. Put

(10)
A0 =

(
A1 B1

C1 D1

)
, B0 =

(
0 B3

C3 0

)
,

C0 =
(

0 B4

C4 0

)
, D0 =

(
0 B2

C2 0

)
.

Then

M = I∗0

(
A0 B0

C0 D0

)
I0, M+ = I∗0

(
A0 B0

C0 D0

)+

I0.

The generalized Schur complement (see [13, 17]) plays an important role in
the study of the MP invertibilities. Next we give some expressions according
to the generalized Schur complement. We use some notations. Let

K = AA+B(I−D+D), H = DD+C(I−A+A), E = (I−AA+)B(I−D+D),

F = (I −DD+)C(I −A+A), S = DD+(D − CA+B)D+D,

(11) R =
(

A+ + A+BS+CA+ −A+BS+

−S+CA+ S+

)
.

Then we have the following general result.
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Theorem 11. Let S as an operator from R(D∗) onto R(D) be invertible,
R(A) and R(D) be closed such that

(I −AA+)BD+D = 0, (I −DD+)CA+A = 0.

Then M is MP invertible if and only if R(E) and R(F ) are closed and

M+ =
(

0 F+

E+ 0

)
+

[
(R∗)+ +

(
0 (I − F+F )H∗

(I − E+E)K∗ 0

)]

×R∗
[
I + R

(
K(I − E+E)K∗ 0

0 H(I − F+F )H∗

)
R∗
]+

×R

(
I −KE+ 0

0 I −HF+

)
.

Proof. Note that

D − CA+B =
(

D1 0
0 0

)
−
(

C1 C3

C4 C2

)(
A−1

1 0
0 0

)(
B1 B3

B4 B2

)

=
(

D1 − C1A
−1
1 B1 −C1A

−1
1 B3

−C4A
−1
1 B1 −C4A

−1
1 B3

)
.

From D−CA+B as an operator from R(D∗) onto R(D) invertible, we obtain
that D1 − C1A

−1
1 B1 is invertible. So A0 is invertible and

(12)

A−1
0 =

(
A1 B1

C1 D1

)−1

=
(

A−1
1 + A−1

1 B1S
−1
1 C1A

−1
1 −A−1

1 B1S
−1
1

−S−1
1 C1A

−1
1 S−1

1

)
,

where S1 = D1 −C1A
−1
1 B1. Let R be defined as Eqn.(11), a direct calculation

shows that

R = I∗0

(
A−1

0 0
0 0

)
I0.

Note that

I∗0

(
0 B0

0 0

)
I0 =

(
0 AA+B(I −D+D)

DD+C(I −A+A) 0

)

=
(

0 K
H 0

)
,

I∗0

(
0 0
0 D0

)
I0 =

(
0 (I −AA+)B(I −D+D)

(I −DD+)C(I −A+A) 0

)

=
(

0 E
F 0

)
,
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and

I∗0

(
0 0
0 D+

0

)
I0 =

(
0 F+

E+ 0

)
,

I∗0

(
I 0
0 I −D+

0 D0

)
I0 =

(
I − F+F 0

0 I − E+E

)
.

From (I − AA+)BD+D = 0 and (I −DD+)CA+A = 0 we obtain B4 = 0
and C4 = 0. Hence C0 = 0. Put 40 = (A0A

∗
0 + B0(I −D+

0 D0)B∗
0)−1. Then

I∗0

( 40 0
0 0

)
I0

= I∗0

(
(A∗0)

−1[I + (A0)−1B0(I −D+
0 D0)B∗

0(A∗0)
−1]−1(A0)−1 0

0 0

)
I0

= I∗0

(
(A∗0)

−1 0
0 0

)[
I +

(
A−1

0 0
0 0

)(
0 B0

0 0

)(
I 0
0 I −D+

0 D0

)

×
(

0 0
B∗

0 0

)(
(A∗0)

−1 0
0 0

)]+(
A−1

0 0
0 0

)
I0

= R∗
(

I + R

(
0 K
H 0

)(
I − F+F 0

0 I − E+E

)(
0 H∗

K∗ 0

)
R∗
)+

R

= R∗
[
I + R

(
K(I − E+E)K∗ 0

0 H(I − F+F )H∗

)
R∗
]+

R.

By Lemma 6, we have

M+ = I∗0

(
A0 B0

0 D0

)+

I0

= I∗0

(
A∗040 −A∗040B0D

+
0

(I −D+
0 D0)B∗

040 D+
0 − (I −D+

0 D0)B∗
040B0D

+
0

)
I0

= I∗0

{(
0 0
0 D+

0

)
+

[(
A∗0 0
0 0

)
+
(

I 0
0 I −D+

0 D0

)(
0 0

B∗
0 0

)]

×
( 40 0

0 0

)[
I −

(
0 B0

0 0

)(
0 0
0 D+

0

)]}
I0

=
(

0 F+

E+ 0

)
+

[
(R∗)+ +

(
I − F+F 0

0 I − E+E

)(
0 H∗

K∗ 0

)]

×R∗
[
I + R

(
K(I − E+E)K∗ 0

0 H(I − F+F )H∗

)
R∗
]+

×R

[
I −

(
0 K
H 0

)(
0 F+

E+ 0

)]
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=
(

0 F+

E+ 0

)
+

[
(R∗)+ +

(
0 (I − F+F )H∗

(I − E+E)K∗ 0

)]

×R∗
[
I + R

(
K(I − E+E)K∗ 0

0 H(I − F+F )H∗

)
R∗
]+

×R

(
I −KE+ 0

0 I −HF+

)
. �

In Campbell and Meyer’s book, they stated that the MP inverse of an upper
block triangular matrix T =

(
A B
0 D

)
is still an upper block triangular if and

only if R(B) ⊂ R(A) and R(B∗) ⊂ R(D∗). We can show this result holds in
the infinite dimensional case and is a very special case of Theorem 11.

Corollary 12. Let A ∈ B(H), D ∈ B(K), B ∈ B(K,H), R(A) and R(D) be
closed. Then T + =

(
A+ −A+BD+

0 D+

)
if and only if R(B) ⊂ R(A) and R(B∗) ⊂

R(D∗).

Proof. (⇐=) If R(B) ⊂ R(A) and R(B∗) ⊂ R(D∗), by Theorem 11 we have
K, H,E and F are all equal to 0, S = D and

R =
(

A+ −A+BD+

0 D+

)
.

So (
A B
0 D

)+

= (R∗)+R∗R = (RR+)∗R = RR+R = R.

(=⇒) Since

T T + =
(

AA+ −AA+BD+ + BD+

0 DD+

)
and

T +T =
(

A+A −A+BD+D + A+B
0 D+D

)

are selfadjoint, we have −AA+BD+ + BD+ = 0 and −A+BD+D + A+B = 0.
From T T +T = T , we have B = AA+B = BD+D. Hence R(B) ⊂ R(A) and
R(B∗) ⊂ R(D∗). �

4. Concluding remarks

In this paper, we derive formulae for the MP inverse of an operator matrix M
under some new conditions. It seems that the general representations without
any conditions is difficult to find. Finally, we would like to explore further on
this topic.
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