DOI QR코드

DOI QR Code

The Protective Effects of Insulin on Hydrogen Peroxide-Induced Oxidative Stress in C6 Glial Cells

  • Mahesh, Ramalingam (Department of Pharmacology, School of Dentistry, Kyung Hee University) ;
  • Kim, Sung-Jin (Department of Pharmacology, School of Dentistry, Kyung Hee University)
  • Published : 2009.10.31

Abstract

Insulin appears to play a role in brain physiology, and disturbances of cerebral insulin signalling and glucose homeostasis are implicated in brain pathology. The objective of the present study was to investigate the protective effects of insulin under conditions of oxidative stress induced by hydrogen peroxide ($H_2O_2$) in C6 glial cells. Insulin at concentration of $10^{-7}$ M could prevent 12 h $H_2O_2$-induced cell death. The formation of reactive oxygen species (ROS), nitric oxide (NO) and 2-thiobarbituric acid-reactive substances (TBARS) were significantly scavenged by insulin pre-treatment in C6 glial cells after $H_2O_2$-induced oxidative stress. Insulin significantly stimulated the phosphorylation of Akt in the cells and the activation of Akt was maintained in response to insulin under $H_2O_2$ incubation for 12 h. In conclusion, these results provide evidence that insulin acts as a free radical scavenger and stimulating Akt activity. These data suggest that insulin may be effective in degenerative diseases with oxidative stress.

Keywords

References

  1. Alessi, D. R. (2001). Discovery of PDK1, one of the missing links in insulin signal transduction. Biochem. Soc. Trans. 29, 1-14. https://doi.org/10.1042/BST0290001
  2. Altiok, N., Ersoz, M., Karpuz, V. and Koyuturk, M. (2006). Ginkgo biloba extract regulates differentially the cell death induced by hydrogen peroxide and simvastatin. Neurotoxicology 27, 158-163. https://doi.org/10.1016/j.neuro.2005.08.004
  3. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  4. Amoroso, S., Gioielli, A., Cataldi, M., Di Renzo, G. and Annunziato, L. (1999). In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular $Ca^{2+}$ increase. Biochim. Biophys. Acta. 1452, 151-160. https://doi.org/10.1016/S0167-4889(99)00110-X
  5. Barber, A. J., Nakamura, M., Wolpert, E. B., Reiter, C. E., Seigel, G. M., Antonetti, D. A. and Gardner, T. W. (2001). Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J. Biol. Chem. 276, 32814-32821. https://doi.org/10.1074/jbc.M104738200
  6. Beckman, J. S. and Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, 1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  7. Beckman, K. B. and Ames, B. N. (1998). The free radical theory of aging matures. Physiol. Rev. 78, 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
  8. Berlet, B. S. and Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  9. Bermejo-Bescós, P., Piñero-Estrada, E. and Villar del Fresno, A. M. (2008). Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol. in Vitro 22, 1496-1502. https://doi.org/10.1016/j.tiv.2008.05.004
  10. Bevan, P. (2001). Insulin signalling. J. Cell Sci. 114, 1429-1430.
  11. Blair, L. A., Bence-Haneluc, K. K., Mehta, S., Franke, T., Kaplan, D. and Marshall, J. (1999). Akt-dependent potentiation of L channels by insulin-like growth factor- 1 is required for neuronal survival. J. Neurosci. 19, 1940-1951.
  12. Cantoni, O., Cattabeni, F., Stocchi, V., Meyn, R. E., Cerutti, P. and Murray, D. (1989). Hydrogen peroxide insult in cultured mammalian cells: relationships between DNA single-strand breakage, poly (ADP-ribose) metabolism and cell killing. Biochim. Biophys. Acta. 1014, 1-7. https://doi.org/10.1016/0167-4889(89)90234-6
  13. Castagne, V., Gautschi, M., Lefevre, K., Posata, A. and Clarke, P. G. (1999). Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Prog. Neurobiol. 59, 397-423. https://doi.org/10.1016/S0301-0082(99)00012-X
  14. Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B. III, Kaestner, K. H., Bartolomei, M. S., Shulman, G. I. and Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728-1731. https://doi.org/10.1126/science.292.5522.1728
  15. Clarke, D. W., Boyd, Jr. F. T., Kappy, M. S. and Raizada, M. K. (1984). Insulin binds to specific receptors and stimulates 2-deoxy-d-glucose uptake in cultured glial cells from rat brain. J. Biol. Chem. 259, 11672-11675.
  16. Contestabile, A. (2001). Oxidative stress in neurodegeneration: mechanisms and therapeutic perspectives. Curr. Topics Med. Chem. 1, 553-568. https://doi.org/10.2174/1568026013394723
  17. Coyle, J. T. and Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689-695. https://doi.org/10.1126/science.7901908
  18. Craft, S., Asthana, S., Newcomer, J. W., Wilkinson, C. W., Matos, I. T., Baker, L. D., Cherrier, M., Lofgreen, C., Latendresse, S., Petrova, A., Plymate, S., Raskind, M., Grimwood, K. and Veith, R. C. (1999). Enhancement of memory in Alzheimer''s disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry 56, 1135-1140. https://doi.org/10.1001/archpsyc.56.12.1135
  19. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. https://doi.org/10.1038/378785a0
  20. Davis, M., Mellman, M. and Shamoon, H. (1993). Physiologic hyperinsulinemia enhances counterregulatory hormone responses to hypoglycaemia in IDDM. J. Clin. Endo. Metab. 76, 1383-1385. https://doi.org/10.1210/jc.76.5.1383
  21. Debons, A. F., Krimsky, I. and From, A. (1970). A direct action of insulin on the hypothalamic satiety center. Am. J. Physiol. 219, 938-943.
  22. Dringen, R. (2000). Metabolism and functions of glutathione in brain. Neurobiology 62, 649-671. https://doi.org/10.1016/S0301-0082(99)00060-X
  23. Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R. and Greenberg, M. E. (1997). Regulation of neuronal survival by the serinethreonine protein kinase Akt. Science 275, 661-665. https://doi.org/10.1126/science.275.5300.661
  24. Fraga, C. G., Leibovitz, B. E. and Tappel, A. (1988). Lipid peroxidation measured as thiobarbituric acid reactives in tissue slices: characterization and comparison with homogentates and microsomes. Free Radic. Biol. Med. 4, 155-161. https://doi.org/10.1016/0891-5849(88)90023-8
  25. Frenkel, K. and Gleichauf, C. (1991). Hydrogen peroxide formation by cells treated with a tumor promoter. Free Radic. Res. Commun. 12-13, 783-794. https://doi.org/10.3109/10715769109145860
  26. Fruewald-Schultes, B., Kern, W., Deininger, E., Wellhoener, P., Kerner, W., Born, J., Fehm, H. L. and Peters, A. (1999). Protective effect of insulin against hypoglycaemia associated counterregulatory failure. J. Clin. Endo. Metab. 84, 1551-1557. https://doi.org/10.1210/jc.84.5.1551
  27. Gille, J. J. P. and Joenje, H. (1992). Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutat. Res. 275, 405-414. https://doi.org/10.1016/0921-8734(92)90043-O
  28. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  29. Gutteridge, J. M. C. and Halliwell, B. (1990). The measurement and mechanism of lipid peroxidation in biological system. Trends Biochem. Sci. 15, 129-135. https://doi.org/10.1016/0968-0004(90)90206-Q
  30. Hajduch, E., Litherland, G. J. and Hundal, H. S. (2001). Protein kinase B (PKB/Akt) - a key regulator of glucose transport? FEBS Lett. 492, 199-203. https://doi.org/10.1016/S0014-5793(01)02242-6
  31. Halliwell, B. and Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 183, 1-85. https://doi.org/10.1016/0076-6879(90)86093-B
  32. Halliwell, B. and Gutteridge, J. M. C. (2000). Free radicals and antioxidants in the year. A historical look to the future. Ann. N Y Acad. Sci. 899, 136-147. https://doi.org/10.1111/j.1749-6632.2000.tb06182.x
  33. Huang, X., Frenkel, K., Klein, C. B. and Costa, M. (1993). Nickel increased oxidants in intact cultured mammalian cells as detected by dichlrofluorescein fluorescence. Toxicol. Appl. Pharmacol. 120, 29-36. https://doi.org/10.1006/taap.1993.1083
  34. Humbert, S., Bryson, E. A., Cordelieres, F. P., Connors, N. C., Datta, S. R., Finkbeiner, S., Greenberg, M. E. and Saudou, F. (2002). The IGF-1/Akt pathway is neuroprotective in Huntington''s disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831-837. https://doi.org/10.1016/S1534-5807(02)00188-0
  35. Kern, W., Kerner, W., Pietrowsky, R., Fehm, H. L. and Born, J. (1994). Effects of insulin and hypoglycaemia on the auditory brain stem response in humans. J. Neurophysiol. 72, 678-683. https://doi.org/10.1152/jn.1994.72.2.678
  36. Kern, W., Peters, A., Fruehwald-Schultes, B., Deininger, E., Born, J. and Fehm, H. (2001). Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74, 270-280. https://doi.org/10.1159/000054694
  37. Kim, S. J. and Han, Y. (2005). Insulin inhibits AMPA-induced neuronal damage via stimulation of protein kinase B (Akt). J. Neural Transm. 112, 179-191. https://doi.org/10.1007/s00702-004-0163-6
  38. Kumari, S., Liu, X., Nguyen, T., Zhang, X. and D'Mello, S. R. (2001). Distinct phosphorylation patterns underlie Akt activation by different survival factors in neurons. Brain Res. Mol. Brain Res. 96, 157-162. https://doi.org/10.1016/S0006-8993(01)03045-1
  39. LeBel, C. P., Ischiropoulos, H. and Bondy, S. C. (1992). Evaluation of the probe 2',7'-dichlororfluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227-231. https://doi.org/10.1021/tx00026a012
  40. Manuchair, E., Shashi, K. S. and Mayur, D. B. (1996). Oxidative stress and antioxidant therapy in Parkinson's disease. Neurobiology 48, 1-19. https://doi.org/10.1016/0301-0082(95)00029-1
  41. Margolis, R. I. and Altszuler, N. (1967). Insulin in the cerebrospinal fluid. Nature 216, 1375-1376. https://doi.org/10.1038/2151375a0
  42. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  43. Ohyashiki, T., Kobayashi, M. and Matsui, K. (1991). Oxygenradical- mediated lipid peroxidation and inhibition of ADPinduced platelet aggregatin. Arch. Biochem. Biophys. 288, 282-286. https://doi.org/10.1016/0003-9861(91)90196-P
  44. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991). peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem. Biophys. 288, 481-487. https://doi.org/10.1016/0003-9861(91)90224-7
  45. Rodin, J., Wack, J., Ferrennini, E. and DeFronzo, R. A. (1985). Effect of insulin and glucose on feeding behaviour. Metabolism 34, 826-831. https://doi.org/10.1016/0026-0495(85)90106-4
  46. Sen, P., Mukherjee, S., Ray, D. and Raha, S. (2003). Involvement of the Akt/PKB signaling pathway with disease processes. Mol. Cell Biochem. 253, 241-246. https://doi.org/10.1023/A:1026020101379
  47. Shi, X., Castranova, V., Halliwell, B. and Vallyathan, V. (1998). Reactive oxygen species and silica-induced carcinogenesis. J. Toxicol. Environ. Health B 1, 181-197. https://doi.org/10.1080/10937409809524551
  48. Szabo, O. M. and Szabo, A. J. (1972). Evidence for an insulin sensitive receptor in the central nervous system. Am. J. Physiol. 223, 1359-1363.
  49. Zhao, W. T. and Alkon, D. L. (2001). Role of insulin and insulin receptor in learning and memory. Mol. Cell Endocrinol. 177, 125-134. https://doi.org/10.1016/S0303-7207(01)00455-5

Cited by

  1. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases vol.119, pp.8, 2012, https://doi.org/10.1007/s00702-011-0758-7
  2. Insulin suppresses MPP+-induced neurotoxicity by targeting integrins and syndecans in C6 astrocytes vol.37, pp.6, 2017, https://doi.org/10.1080/10799893.2017.1369119
  3. Protective effects of activated signaling pathways by insulin on C6 glial cell model of MPP+-induced Parkinson’s disease vol.37, pp.1, 2017, https://doi.org/10.3109/10799893.2016.1171342
  4. Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes vol.80, pp.1, 2010, https://doi.org/10.1016/j.bcp.2010.03.009
  5. Insulin on hydrogen peroxide-induced oxidative stress involves ROS/Ca2+and Akt/Bcl-2 signaling pathways vol.48, pp.3, 2014, https://doi.org/10.3109/10715762.2013.869588
  6. Insulin exerts neuroprotective effects via Akt/Bcl-2 signaling pathways in differentiated SH-SY5Y cells vol.35, pp.1, 2015, https://doi.org/10.3109/10799893.2014.922576
  7. The role of insulin against hydrogen peroxide-induced oxidative damages in differentiated SH-SY5Y cells vol.34, pp.3, 2014, https://doi.org/10.3109/10799893.2013.876043
  8. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease vol.134, pp.2, 2011, https://doi.org/10.1016/j.jep.2010.12.016
  9. Mechanisms of action of brain insulin against neurodegenerative diseases vol.121, pp.6, 2014, https://doi.org/10.1007/s00702-013-1147-1
  10. Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells vol.36, pp.1, 2016, https://doi.org/10.3109/10799893.2014.970276
  11. Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells vol.63, pp.2, 2020, https://doi.org/10.3839/jabc.2020.019
  12. Effect of Donganme (Sorghum bicolor L. Moench) against oxidative stress in vitro and in a cellular system in glial cells vol.47, pp.3, 2020, https://doi.org/10.7744/kjoas.20200039