DOI QR코드

DOI QR Code

Mechanical Properties of Bulk Amorphous Ti50Cu20Ni20Al10 Fabricated by High-energy Ball Milling and Spark-plasma Sintering

  • Nguyen, H.V. (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, J.C. (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, J.S. (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Y.J. (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Y.S. (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan)
  • 발행 : 2009.10.28

초록

Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region ($\Delta$T$_x$ = T$_x$ T$_g$, T$_g$ and T$_x$: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.

키워드

참고문헌

  1. Y. C. Kim, W. T. Kim and D. H. Kim: Mater. Sci. Eng. A., 375 (2004) 127. https://doi.org/10.1016/j.msea.2003.10.115
  2. T. Zhang and A. Inoue: Mater. Trans. JIM., 39 (1998) 1001. https://doi.org/10.2320/matertrans1989.39.1001
  3. A. Inoue, N. Nishiyama, K. Amiyam, T. Zhang and T. Masumoto: Mater. Lett., 19 (1994) 131. https://doi.org/10.1016/0167-577X(94)90057-4
  4. K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto: Mater. Sci. Eng. A., 179 (1994) 692. https://doi.org/10.1016/0921-5093(94)90294-1
  5. A. Inoue: Mater. Sci. Forum., 312 (1999) 307.
  6. D. V. Louzguine and A. Inoue: Scripta. Mater., 43 (2000) 371. https://doi.org/10.1016/S1359-6462(00)00425-5
  7. A. W. Weeber and H. Bakker: Physica B: Condensed Matter., 153 (1988) 93. https://doi.org/10.1016/0921-4526(88)90038-5
  8. C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017. https://doi.org/10.1063/1.94213
  9. M. S. El-Eskandarany, K. Aoki and K. Suzuki: J. Less-Common Met., 167 (1990) 113. https://doi.org/10.1016/0022-5088(90)90295-U
  10. T. S. Kim, J. K. Kim, H. J. Kim and J. C. Bae: Mater. Sci. Eng. A., 402 (2005) 228. https://doi.org/10.1016/j.msea.2005.04.044
  11. P. P. Choi, J. S. Kim, O. T. H. Nguyen and Y. S. Kwon: Mater Lett., 61 (2007) 4591. https://doi.org/10.1016/j.matlet.2007.02.066
  12. P. P. Choi, J. S. Kim, O. T. H. Nguyen, D. H. Kwon, Y. S. Kwon and J. C. Kim: Materials Science and Engineering A, 449 (2007) 1119. https://doi.org/10.1016/j.msea.2006.02.264
  13. N. H. Viet, J. C. Kim, J. S. Kim and Y. S. Kim: J. Korean Powder Metall. Inst., 16 (2009) 9 (Korean). https://doi.org/10.4150/KPMI.2009.16.1.009