DOI QR코드

DOI QR Code

Fe-8 wt%Ni 나노합금분말 사출성형체의 소결특성 및 표면조도

Surface Roughness and Sintering Characteristics of Fe-8 wt%Ni Component Fabricated by PIM

  • 차범하 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Cha, Berm-Ha (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University)
  • 발행 : 2009.10.28

초록

Development of nanoparticulate materials technology is essential to processing of highly functional nanoparticulate materials and components with small and complex shape. In this paper, the effect of particle size on surface roughness and shrinkage of sintered Fe-8 wt%Ni nanopowder components fabricated by PIM were investigated. The Fe-8 wt%Ni nanopowder was prepared by hydrogen reduction of ball-milled Fe$_2$O$_3$-NiO powder. Feedstock of nanopowder prepared with the wet-milled powder was injection molded into double gear shaped part at 120$^{\circ}C$. After sintering, the sintered part showed near full densified microstructure having apparently no porosity (98%T.D.). Surface roughness of sintered bulk using nanopowder was less than 815 nm and it was about seven times lower than 7 $\mu$m that is typically obtainable from a sintered part produced from PIM.

키워드

참고문헌

  1. H. Zhang and R. M. German: Met. Pow. Rep., June (2001) 18. https://doi.org/10.1016/S0026-0657(01)80323-4
  2. R. M. German: Powder Injection Molding, MPIF, NJ (1990) 3.
  3. H. Zhang and R. M. German: Int. J. Pow. Metall., 38(1) (2002) 51.
  4. L. Liu, N. H. Loh, B. Y. Tay, S. B. Tay, Y. Murakoshi and R. Maeda: Scrip. Mater., 55 (2006) 1103. https://doi.org/10.1016/j.scriptamat.2006.08.039
  5. E. C. Santos, M. Shiomi, K. Osakada and T. Laoui: Int. J. Mach. Tools Manuf., 46 (2006) 1459. https://doi.org/10.1016/j.ijmachtools.2005.09.005
  6. V. Piotter, T. Gietzelt, K. Plewa, R. Ruprecht and J. Hausselt: Advances in Powder Metallurgy & Particulate Materials-2001, 4 (2001) 199.
  7. H. J. Ritzhaupt-Kleissl, W. Bauer, E. Gunther, J. Laubersheimer and J. $Hau{\ss}elt$: Microsyst. Technol., 2 (1996) 130. https://doi.org/10.1007/s005420050029
  8. W. Bauer, H. J. Ritzhaupt-Kleissl and J. Hausselt: Microsyst. Technol., 4 (1998) 125. https://doi.org/10.1007/s005420050113
  9. W. Bauer, H. J. Ritzhaupt-Kleissl and J. Hausselt: Ceram. Int., 25 (1999) 201. https://doi.org/10.1016/S0272-8842(98)00023-6
  10. I. H. Moon, M. K. Kang, J. S. Lee, J. K. Lee, and J. S. Kang: Proc. 1994 pow. metall. World Congress, Paris, France 3 (1994) 69.
  11. J. S. Lee, B. H. Cha and Y. S. Kang: Adv. Eng. Mater., 7 (2005) 467 https://doi.org/10.1002/adem.200400194
  12. Z. Y. Liu, N. H. Loh, S. B. Tor, K. A. Khor, Y. Murakoshi and R. Maeda: J. Mater. Sci. Lett., 48 (2001) 31. https://doi.org/10.1016/S0167-577X(00)00276-7
  13. A. C. Rota: Advances in powder Metall. & Particulate Materials-2002, 10 (2002) 49.
  14. E. A. Olevsky and R. M. German: Acta Mater., 48 (2000) 1153. https://doi.org/10.1016/S1359-6454(99)00368-7
  15. E. A. Olevsky, R. M. German and A. Upadhyaya: Acta Mater., 48 (2000) 1167. https://doi.org/10.1016/S1359-6454(99)00369-9
  16. E. S. Yoon, J. S. Lee and T. S. Yoon: J. Kor. Pow. Metall. Ins., 9 (2002) 235. https://doi.org/10.4150/KPMI.2002.9.4.235
  17. H. Y. Nam, S. K. Kwon, Y. S. Kang and J. S. Lee: Mater. Sci. Forum, 449-452 (2004) 1141. https://doi.org/10.4028/www.scientific.net/MSF.449-452.1141
  18. J. S. Lee, B. H. Cha, H. G. Kang and Y. S. Kang: Mater. Sci. Forum, 539-543 (2007) 5001. https://doi.org/10.4028/www.scientific.net/MSF.539-543.5001

피인용 문헌

  1. Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA vol.19, pp.2, 2012, https://doi.org/10.4150/KPMI.2012.19.2.140
  2. Consolidation of Iron Nanopowder by Nanopowder-Agglomerate Sintering at Elevated Temperature vol.20, pp.1, 2013, https://doi.org/10.4150/KPMI.2013.20.1.001
  3. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials vol.6, pp.9, 2013, https://doi.org/10.3390/ma6094046