DOI QR코드

DOI QR Code

환원/침탄공정에 의한 TiC/Co 복합분말 합성

Synthesis of TiC/Co Composite Powder by the Carbothermal Reduction Process

  • Lee, Gil-Geun (Division of Materials Science and Engineering, College of Engineering, Pukyong National University) ;
  • Ha, Gook-Hyun (Korea Institute of Materials Science)
  • 발행 : 2009.10.28

초록

Ultra-fine TiC/Co composite powder was synthesized by the carbothermal reduction process without wet chemical processing. The starting powder was prepared by milling of titanium dioxide and cobalt oxalate powders followed by subsequent calcination to have a target composition of TiC-15 wt.%Co. The prepared oxide powder was mixed again with carbon black, and this mixture was then heat-treated under flowing argon atmosphere. The changes in the phase, mass and particle size of the mixture during heat treatment were investigated using XRD, TG-DTA and SEM. The synthesized oxide powder after heat treatment at 700$^{\circ}C$ has a mixed phase of TiO$_2$ and CoTiO$_3$ phases. This composite oxide powder was carbothermally reduced to TiC/Co composite powder by the solid carbon. The synthesized TiC/Co composite powder at 1300$^{\circ}C$ for 9 hours has particle size of under about 0.4 $\mu$m.

키워드

참고문헌

  1. K.J.A. Brookes: Word Directory and Handbook of Hardmetals and Hard Materials, 6th ed., K.J.A. Brookes (Ed.) International Carbide Data, Marsh Barton (1996) 9.
  2. G.G. Lee, G.H. Ha and B.K. Kim: Powder Metallurgy, 43 (2000) 79. https://doi.org/10.1179/003258900665736
  3. G.G. Lee and W.Y. Kim: Metals and Materials International, 11 (2005) 177. https://doi.org/10.1007/BF03027463
  4. K.E. Gonsalves, S.P. Rangarajan and J. Wang: Handbook of Nanostructured Materials and Nanotechnology, H.S.Nalwa (Ed.) Academic Press, London (2000) 1.
  5. B.K. Kim, G.H. Ha, D.W. Lee and G.G. Lee: Advanced Performance Materials, 5 (1998) 341. https://doi.org/10.1023/A:1008665301338
  6. G.G. Lee, C.M. Moon and B.K. Kim: J. Korean Powder Metallurgy Institute, 10 (2003) 228 (Korean). https://doi.org/10.4150/KPMI.2003.10.4.228
  7. M. Sherif El-Eskandarany: J. of Alloys Compound, 305 (2000) 225. https://doi.org/10.1016/S0925-8388(00)00692-7
  8. H. Preiss, L.M. Beger and D. Schultze: J. of European Ceramic Society, 19 (1999) 195. https://doi.org/10.1016/S0955-2219(98)00190-3
  9. N.A. Hassine, J.G.P. Binner and T.E. Cross: Refractory Metals & Hard Materials, 13 (1995) 353. https://doi.org/10.1016/0263-4368(95)00035-H
  10. R. Koc: J. of European Ceramic Society, 17 (1997) 1309. https://doi.org/10.1016/S0955-2219(96)00241-5
  11. R. Koc: J. Mater. Sci., 33 (1998) 1049. https://doi.org/10.1023/A:1004332416351
  12. R. Koc and J.S. Folmer: J. Mater. Sci., 32 (1997) 3101. https://doi.org/10.1023/A:1018634214088
  13. G.G. Lee and G.H. Ha: Materials Transactions, 47 (2006) 3007. https://doi.org/10.2320/matertrans.47.3007
  14. G.H. Ha, G.G. Lee, M.C. Yang and B.K. Kim: Proceeding of EURO PM 2006 Vol. 1 Hard Materials, European Powder Metallurgy Association, Shrewsbury (2006) 97.
  15. G.G. Lee and C.Y. Kim: J. of Korean Powder Metall. Inst., 12 (2005) 336 (Korean). https://doi.org/10.4150/KPMI.2005.12.5.336
  16. G.G. Lee and B. Kim: Materials Transactions, 44 (2003) 2145. https://doi.org/10.2320/matertrans.44.2145
  17. R. Shaviv: Mater. Sci. Eng., A209 (1996) 345. https://doi.org/10.1016/0921-5093(95)10125-X
  18. L.M. Berger, W. Gruner, E. Langholf and S. Stolle: Int. J. Refract. Met. Hard Mater., 17 (1999) 235. https://doi.org/10.1016/S0263-4368(98)00077-8