DOI QR코드

DOI QR Code

Pharmacokinetic Behavior and Biodistribution of Paclitaxel-Loaded Lipid Nanosuspension

  • Choi, Sung-Up (Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University) ;
  • Park, Jung-Min (Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University) ;
  • Choi, Woo-Sik (Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University) ;
  • Lee, Jae-Hwi (Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University) ;
  • Choi, Young-Wook (Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University)
  • Published : 2009.10.20

Abstract

In this study, paclitaxel-loaded lipid nanosuspension (PxLN) was prepared and the in vivo profiles after intravenous administration in rats were investigated. We compared the manufacturing processes depending on the temperature: PxLN-H for a hot homogenization process and PxLN-C for solidification of lipid-drug mixtures by liquid nitrogen. Both formulations showed submicron size distribution and the similar drug loading efficiency of about 70%. In vitro release of PxLNs and Taxol$^{(R)}$ performed by a dialysis diffusion method showed similar pattern for PxLN-H and Taxol$^{(R)}$, but the reduced release profile for PxLN-C. PxLN or Taxol$^{(R)}$ was intravenously administered to the rats at a dose of 5 mg/kg as paclitaxel. The drug in blood samples were assayed by the HPLC/MS/MS method. The AUC$_t$ of PxLN-H was 3.4-fold greater than that of Taxol$^{(R)}$. PxLN-H gave higher biodistribution in all tissues than did Taxol$^{(R)}$. In addition, it maintained the higher drug concentration for 12 h. This lipid nanosuspension might be a promising candidate for an alternative formulation for the parenteral delivery of poorly water-soluble paclitaxel.

Keywords

References

  1. C.M. Spencer and D. Faulds, Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer, Drugs, 48, 794-847 (1994). https://doi.org/10.2165/00003495-199448050-00009
  2. D.B. Chen, T.Z. Yang, W.L. Lu and Q. Zhang, In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel, Chem. Pharm. Bull. (Tokyo), 49, 1444-1447 (2001). https://doi.org/10.1248/cpb.49.1444
  3. R. Cavalli, O. Caputo and M.R. Gasco, Preparation and characterization of solid lipid nanospheres containing paclitaxel, Eur. J. Pharm. Sci., 10, 305-309 (2000). https://doi.org/10.1016/S0928-0987(00)00081-6
  4. A. Miglietta, R. Cavalli, C. Bocca, L. Gabriel and M.R. Gasco, Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel, Int. J. Pharm., 210, 61-67 (2000). https://doi.org/10.1016/S0378-5173(00)00562-7
  5. W.R. Perkins, I. Ahmad, X. Li, D.J. Hirsh, G.R. Masters, C.J. Fecko, J. Lee, S. Ali, J. Nguyen, J. Schupsky, C. Herbert, A.S. Janoff and E. Mayhew, Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds, Int. J. Pharm., 200, 27-39 (2000). https://doi.org/10.1016/S0378-5173(00)00329-X
  6. S.U. Choi, S.K. Kim, J.M. Lee and Y.W. Choi, Injection Formulation of Paclitaxel Employing Solid Lipid Nanoparticles (SLN), J. Kor. Pharm. Sci., 33, 319-322 (2003).
  7. W. Mehnert and K. Mader, Solid lipid nanoparticles: production, characterization and applications, Adv. Drug Del. Rev., 47, 165-196 (2001). https://doi.org/10.1016/S0169-409X(01)00105-3
  8. G. Basileo, M. Breda, G. Fonte, R. Pisano and C.A. James, Quantitative determination of paclitaxel in human plasma using semi-automated liquid-liquid extraction in conjunction with liquid chromatography/tandem mass spectrometry, J. Pharm. Biomed. Anal., 32, 591-600 (2003). https://doi.org/10.1016/S0731-7085(03)00166-3
  9. J.A. Shabbits, G.N. Chiu and L.D. Mayer, Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems, J. Controlled Rel., 84, 161-170 (2002). https://doi.org/10.1016/S0168-3659(02)00294-8
  10. S.C. Yang, L.F. Lu, Y. Cai, J.B. Zhu, B.W. Liang and C.Z. Yang, Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain, J. Controlled Rel., 59, 299-307 (1999). https://doi.org/10.1016/S0168-3659(99)00007-3
  11. K. Westesen, H. Bunjes and M.H. Koch, Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential, J. Controlled Rel., 48, 223-236 (1997). https://doi.org/10.1016/S0168-3659(97)00046-1
  12. R.H. Muller, K. Mader and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art, Eur. J. Pharm. Biopharm., 50, 161-177 (2000). https://doi.org/10.1016/S0939-6411(00)00087-4
  13. L. Serpe, M.G. Catalano, R. Cavalli, E. Ugazio, O. Bosco, R. Canaparo, E. Muntoni, R. Frairia, M.R. Gasco, M. Eandi and G.P. Zara, Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line, Eur. J. Pharm. Biopharm., 58, 673-680 (2004). https://doi.org/10.1016/j.ejpb.2004.03.026
  14. B. Sjostrom and B. Bergenstahl, Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate, Int. J. Pharm., 88, 53-62 (1992). https://doi.org/10.1016/0378-5173(92)90303-J
  15. A.L. Almeida, S. Runge and R.H. Muller, Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters, Int. J. Pharm., 149, 255-265 (1997). https://doi.org/10.1016/S0378-5173(97)04885-0
  16. J. Hamdani, A.J. Moes and K. Amighi, Physical and thermal characterisation of Precirol and Compritol as lipophilic glycerides used for the preparation of controlled-release matrix pellets, Int. J. Pharm., 260, 47-57 (2003). https://doi.org/10.1016/S0378-5173(03)00229-1
  17. J. Liu, F. Zhang and J.W. McGinity, Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion, Eur. J. Pharm. Biopharm., 52, 181-190 (2001). https://doi.org/10.1016/S0939-6411(01)00162-X
  18. M.R. Wenk, A. Fahr, R. Reszka and J. Seelig, Paclitaxel partitioning into lipid bilayers, J. Pharm. Sci., 85, 228-231 (1996). https://doi.org/10.1021/js950120i
  19. H. Heiati, R. Tawashi and N.C. Phillips, Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization, J. Microencapsul., 15, 173-184 (1998). https://doi.org/10.3109/02652049809006847
  20. G.J. Fetterly and R.M. Straubinger, Pharmacokinetics of paclitaxel-containing liposomes in rats, AAPS Pharm. Sci., 5, E32 (2003). https://doi.org/10.1208/ps050432
  21. J.A. Straub, D.E. Chickering, J.C. Lovely, H. Zhang, B. Shah, W.R. Waud and H. Bernstein, Intravenous hydrophobic drug delivery: a porous particle formulation of paclitaxel (AI-850), Pharm. Res., 22, 347-355 (2005). https://doi.org/10.1007/s11095-004-1871-1