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CATEGORICAL PROPERTY OF INTUITIONISTIC
TOPOLOGICAL SPACES

Seok Jong Lee and Jae Myoung Chu

Abstract. We obtain some characterizations of continuous, open and
closed functions in intuitionistic topological spaces. Moreover we reveal
that the category of topological spaces is a bireflective full subcategory
of the category of intuitionistic topological spaces.

1. Introduction

After Atanassov [1, 2, 4] introduced the concept of “intuitionistic fuzzy sets”
as a generalization of fuzzy sets, it becomes a popular topic of investigation in
the fuzzy set community. Many mathematical advantages of intuitionistic fuzzy
sets are discussed in [3]. Çoker [7] generalized topological structures in fuzzy
topological spaces to intuitionistic fuzzy topological spaces using intuitionistic
fuzzy sets. Later many researchers have studied topics related to intuitionistic
fuzzy topological spaces.

On the other hand, Çoker [8] introduced the concept of “intuitionistic sets”
in 1996. This is a discrete form of intuitionistic fuzzy set, where all the sets are
entirely the crisp sets. Still it has membership and nonmembership degrees,
so this concept gives us more flexible approaches to representing vagueness in
mathematical objects including engineering fields with classical set logic. In
2000, Çoker [9] also introduced the concept of intuitionistic topological spaces
with intuitionistic sets, and investigated basic properties of continuous func-
tions and compactness. He and his colleague [5, 6] also examined separation
axioms in intuitionistic topological spaces.

In this paper, we obtain some characterizations of continuous, open and
closed functions in intuitionistic topological spaces. Moreover we reveal that the
category of topological spaces is a bireflective full subcategory of the category
of intuitionistic topological spaces.
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2. Preliminaries

Here we list some definitions and properties of intuitionistic topological
spaces which we shall use frequently in the following sections.

Definition 2.1 ([8]). Let X be a nonempty set. An intuitionistic set (IS for
short) A is an object having the form

A = 〈X, A1, A2〉,
where A1 and A2 are subsets of X satisfying A1 ∩A2 = ∅. The set A1 is called
the set of members of A, while A2 is called the set of nonmembers of A. Every
crisp set A on a nonempty set X is obviously an IS having the form 〈X, A, Ac〉.
Definition 2.2 ([8]). Let A = 〈X, A1, A2〉 and B = 〈X, B1, B2〉 be IS’s on X.
Then

(1) A ⊆ B if and only if A1 ⊆ B1 and B2 ⊆ A2.
(2) A = B if and only if A ⊆ B and B ⊆ A.
(3) A = 〈X, A2, A1〉.
(4) ∩Ai = 〈X,∩A1

i ,∪A2
i 〉.

(5) ∪Ai = 〈X,∪A1
i ,∩A2

i 〉.
(6) ¤A = 〈X, A1, (A1)c〉.
(7) ♦A = 〈X, (A2)c

, A2〉.
(8) ∅∼ = 〈X, ∅, X〉 and X∼ = 〈X, X, ∅〉.

Let f be a function from a set X to a set Y . Let A = 〈X, A1, A2〉 be an IS
in X and B = 〈Y,B1, B2〉 an IS in Y . Then the preimage f−1(B) is an IS in
X defined by

f−1(B) = 〈X, f−1(B1), f−1(B2)〉
and the image f(A) is an IS in Y defined by

f(A) = 〈Y, f(A1), f−(A2)〉,
where f−(A2) = (f((A2)c))

c
.

Theorem 2.3 ([8]). Let A,Ai(i ∈ J) be IS’s in X,B, Bj(j ∈ K) IS’s in Y ,
and f : X → Y a function. Then

(1) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2), B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2).
(2) A ⊆ f−1(f(A)), and if f is injective, then A = f−1(f(A)).
(3) f(f−1(B)) ⊆ B, and if f is surjective, then f(f−1(B)) = B.
(4) f−1(∪Bi) = ∪f−1(Bi), f−1(∩Bi) = ∩f−1(Bi).
(5) f(∪Ai) = ∪f(Ai); f(∩Ai) ⊆ ∩f(Ai), and if f is injective, then f(∩Ai)

= ∩f(Ai).
(6) f−1(Y∼) = X∼, f−1(∅∼) = ∅∼.
(7) f(∅∼) = ∅∼; f(X∼) = Y∼, if f is surjective.
(8) If f is surjective, then f(A) ⊆ f(A). If, furthermore, f is injective,

then we have f(A) = f(A).
(9) (f−1(B)) = f−1(B).
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Definition 2.4 ([7]). An intuitionistic topology (IT for short) on a nonempty
set X is a family τ of IS’s in X satisfying the following axioms:

(1) ∅∼, X∼ ∈ T ,
(2) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,
(3)

⋃
Gi ∈ T for any arbitrary family {Gi | i ∈ J} ⊆ T .

In this case the pair (X, T ) is called an intuitionistic topological space (ITS for
short) and any IS in T is called an intuitionistic open set (IOS for short) in X.
The complement A of an IOS A is called an intuitionistic closed set (ICS for
short) in X.

Example 2.5. For any topological space (X, τ), we trivially have an ITS
(X, T ), where T = {〈X,A, Ac〉 | A ∈ τ}.
Example 2.6. Consider the set X = R and take the family

S = {〈R, (a, b), (−∞, a]〉 | a, b ∈ R}
of IS’s in R. In this case S generates an IT T on R, which is called the “usual
left intuitionistic topology” on R. The base B for this IT can be written in the
form B = {X∼} ∪ S while T consists of the following IS’s:
∅∼, X∼;
〈R,

⋃
(ai, bi), (−∞, c]〉, where ai, bi, c ∈ R, {ai | i ∈ J} is bounded from

below, c = inf{ai | i ∈ J};
〈R,

⋃
(ai, bi), ∅〉, where ai, bi, c ∈ R, {ai | i ∈ J} is not bounded from below.

Definition 2.7 ([7]). Let (X, T ) be an ITS and A = 〈X,A1, A2〉 be an IS in
X. Then the interior and closure of A are defined by

cl(A) =
⋂
{K | K is an ICS in X and A ⊆ K},

int(A) =
⋃
{G | G is an IOS in X and G ⊆ A}.

Theorem 2.8 ([9]). For any IS A in (X, T ), the following properties hold:

cl(A) = int(A),

int(A) = cl(A).

Theorem 2.9 ([9]). Let (X, T ) be an ITS and A,B be IS’s in X. Then the
following properties hold:

(1) int(A) ⊆ A.
(2) A ⊆ B ⇒ int(A) ⊆ int(B).
(3) int(int(A)) = int(A).
(4) int(A ∩B) = int(A) ∩ int(B).
(5) int(X∼) = X∼.
(6) A ⊆ cl(A).
(7) A ⊆ B ⇒ cl(A) ⊆ cl(B).
(8) cl(cl(A)) = cl(A).
(9) cl(A ∪B) = cl(A) ∪ cl(B).
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(10) cl(∅∼) = ∅∼.

Definition 2.10 ([7]). Let (X, T ) and (Y, T ′) be two ITS’s and let f : X → Y
be a function. Then f is said to be continuous if and only if the preimage of
each IS in T ′ is an IS in T .

Definition 2.11 ([7]). Let (X, T ) and (Y, T ′) be two ITS’s and let f : X → Y
be a function. Then f is said to be open if and only if the image of each IS in
T is an IS in T ′.
Theorem 2.12 ([9]). f : (X, T ) → (Y, T ′) is continuous if and only if the
preimage of each ICS in T ′ is an ICS in T .

Theorem 2.13 ([9]). The following are equivalents to each other:
(1) f : X → Y is continuous.
(2) f−1(int(B)) ⊆ int(f−1(B)) for each IS B in Y .
(3) cl(f−1(B)) ⊆ f−1(cl(B)) for each IS B in Y .

For categorical terminologies used in the following sections refer to [10].

3. More about continuous, open, and closed functions

In this section, we obtain some characterizations of continuous, open and
closed functions in intuitinistic topological spaces.

Theorem 3.1. Let (X, T ) and (Y, T ′) be ITS’s. Then the following are equival-
ents:

(1) f : (X, T ) → (Y, T ′) is continuous.
(2) f(cl(A)) ⊆ cl(f(A)) for each IS A in X.

Proof. (1) ⇒ (2) Let f be a continuous function and A any IS in X. Let
f(A) = B. Then A ⊆ f−1(B). Thus, by Theorem 2.13, we have

f(cl(A)) ⊆ f(cl(f−1(B))) ⊆ f(f−1(cl(B))) ⊆ cl(B) = cl(f(A)).

(2) ⇒ (1) Let B be any IS in Y . By (2),

f(cl(f−1(B))) ⊆ cl(ff−1(B)).

Thus
cl(f−1(B)) ⊆ f−1(cl(ff−1(B))) ⊆ f−1(cl(B)).

Thus it follows by Theorem 2.13. ¤
Theorem 3.2. Let f : (X, T ) → (Y, T ′) be an injection. If f is continuous,
then int(f(A)) ⊆ f(int(A)) for each IS A in X

Proof. Let A be an IS in X. Then by Theorem 2.13, we have

f−1(int(f(A))) ⊆ int(f−1(f(A))).

Since f is injective,

f(f−1(int(f(A)))) ⊆ int(f(A)) ⊆ f(int(f−1(f(A)))) = f(int(A)).

Thus int(f(A)) ⊆ f(int(A)). ¤
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Example 3.3. Let X = {a, b, c, d} and consider the intuitionistic topology

T = {∅∼, X∼, A1}, T ′ = {∅∼, X∼, B1, B2},
where A1 = 〈X, {a, d}, {b, c}〉, B1 = 〈X, {a}, {b, c, d}〉, B2 = 〈X, {a, b}, {c, d}〉.
Define f : (X, T ) → (X, T ′) by f(a) = f(d) = a, f(b) = f(c) = b. Then
f−1(B1) = A1, f

−1(B2) = X∼. Thus f is continuous and not injective.
Let A = 〈X, {a, b, d}, {c}〉 be an IS in (X, T ). Then f(int(A)) = B1, and
int(f(A)) = B2. Thus int(f(A)) 6⊆ f(int(A)).

Theorem 3.4. Let (X, T ) and (Y, T ′) be ITS’s. Then the following are equival-
ents:

(1) f : (X, T ) → (Y, T ′) is open.
(2) f(int(A)) ⊆ int(f(A)) for each IS A in X.
(3) int(f−1(B)) ⊆ f−1(int(B)) for each IS B in Y .

Proof. (1) ⇒ (2) Let f be an open function. Since f(int(A)) is an open set
contained in f(A), f(int(A)) ⊆ int(f(A)) by definition of interior.

(2) ⇒ (3) Let B be any IS in Y . Then f−1(B) is an IS in X. By (2),

f(int(f−1(B)) ⊆ int(ff−1(B)) ⊆ int(B).

Thus we have

int(f−1(B)) ⊆ f−1f(int(f−1(B))) ⊆ f−1(int(B)).

(3) ⇒ (1) Let A be any IOS in X. Then int(A) = A and f(A) is an IS in
Y . By (3),

A = int(A) ⊆ int(f−1f(A)) ⊆ f−1(int(f(A))).
Hence we have

f(A) ⊆ ff−1(int(f(A))) ⊆ int(f(A)) ⊆ f(A).

Thus f(A) = int(f(A)) and hence f(A) is an IOS in Y . Therefore f is an open
function. ¤
Definition 3.5. Let (X, T ) and (Y, T ′) be two ITS’s and let f : X → Y be a
function. Then f is said to be closed if and only if the image of each ICS in X
is an ICS in Y .

Example 3.6. Let X = {a, b, c} and consider the intuitionistic topology

T = {∅∼, X∼, A1, A2},
where A1 = 〈X, {a}, {b, c}〉, A2 = 〈X, {a, b}, {c}〉. Define f : (X, T ) → (X, T )
by f(a) = f(b) = a, f(c) = b and g : (X, T ) → (X, T ) by g(a) = g(b) =
b, g(c) = c. Then f(A1) = 〈X, {a}, {b, c}〉 = A1 ∈ T , f(A2) = 〈X, {a}, {b, c}〉 =
A1 ∈ T , f(X∼) = 〈X, {a, b}, {c}〉 = A2 ∈ T , and f(∅∼) = 〈X, ∅, X〉 =
∅∼ ∈ T . Thus f is an open function. However, f(A2) = f(〈X, {c}, {a, b}〉) =
〈X, {b}, {a, c}〉 is not an ICS in Y . Thus f is not a closed function.

Moreover g(A1) = g(〈X, {b, c}, {a}〉) = 〈X, {b, c}, {a}〉 = A1, g(A2) =
g(〈X, {c}, {a, b}〉) = 〈X, {c}, {a, b}〉 = A2, g(∅∼) = g(〈X, X, ∅〉) = 〈X, {b, c}, {a}〉
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= A1, and g(X∼) = g(〈X, ∅, X〉) = 〈X, ∅, X〉 = X∼. Thus g is a closed func-
tion. However, g(A1) = 〈X, {b}, {a, c}〉 is not an IOS in Y . Thus g is not an
open function.

Theorem 3.7. Let f : (X, T ) → (Y, T ′) be a bijection. Then f is open if and
only if f is closed.

Proof. Let f be an open function, and let F be an intuitionistic closed set in
X. Then F = G for some IOS G = 〈X, G1, G2〉 in X. Hence

f(F ) = f(G) = f(〈X, G2, G1〉) = 〈Y, f(G2), (f(G1)c)c〉
= 〈Y, f(G2), f(G1)〉 = 〈Y, f(G1), f(G2)〉,

which is an ICS in Y , because f is an open function. Similarly the converse
can be proved. ¤

Theorem 3.8. Let (X, T ) and (Y, T ′) be ITS’s. Then the following statements
are equivalent:

(1) f : (X, T ) → (Y, T ′) is a closed function.
(2) cl(f(A)) ⊆ f(cl(A)) for each IS A in X.

Proof. (1) ⇒ (2) Let A be any IS in X. Clearly, cl(A) is an ICS in X. Since
f is a closed function, f(cl(A)) is an ICS in Y . Thus we have

cl(f(A)) ⊆ cl(f(cl(A))) = f(cl(A)).

(2) ⇒ (1) Let A be any ICS in X. Then cl(A) = A. By (2),

cl(f(A)) ⊆ f(cl(A)) = f(A) ⊆ cl(f(A)).

Thus f(A) = cl(f(A)) and hence f(A) is an ICS in Y . Therefore f is a closed
function. ¤

4. Categorical properties

Now we are ready to study the relation between the category of topological
spaces and the category of intuitionistic topological spaces.

Let Top be the category of all topological spaces and continuous functions,
and ITop the category of all intuitionistic topological spaces and continuous
functions.

Now we define some functors between Top and ITop.

Theorem 4.1. Define G1, G2 : ITop → Top by

G1(X, T ) = (X, G1(T )) and G1(f) = f,

where G1(T ) = {A1 | 〈X, A1, A2〉 ∈ T },
G2(X, T ) = (X, G2(T )) and G2(f) = f,

where G2(T ) = {(A2)c | 〈X,A1, A2〉 ∈ T }. Then G1 and G2 are functors.

Proof. Trivial. ¤
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Theorem 4.2. Define F0 : Top → ITop by

F0(X, τ) = (X,F0(τ)) and F0(f) = f,

where F0(τ) = {〈X, A,Ac〉 | A ∈ τ}. Then F0 is a functor.

Proof. Clearly F0(τ) is an IT. Next, we show that if f : (X, τ) → (Y, τ ′) is con-
tinuous then f : (X, F0(τ)) → (Y, F0(τ ′)) is continuous. Let B = 〈Y,B,Bc〉 ∈
F0(τ ′). Then B ∈ τ ′, so f−1(B) ∈ τ . Since f−1(Bc) = (f−1(B))c, we have
〈X, f−1(B), f−1(Bc)〉 = 〈X, f−1(B), (f−1(B))c〉 ∈ F0(τ). Thus F0 is a func-
tor. ¤

Theorem 4.3. Define F1 : Top → ITop by

F1(X, τ) = (X,F1(τ)) and F1(f) = f,

where F1(τ) = {〈X, A, ∅〉 | A ∈ τ}. Then F1 is a functor.

Proof. Clearly F1(τ) is an IT. Next, we show that if f : (X, τ) → (Y, τ ′) is
continuous then f : (X,F1(τ)) → (Y, F1(τ ′)) is continuous. Let B = 〈Y, B, ∅〉 ∈
F1(τ ′). Then B ∈ τ ′, so f−1(B) ∈ τ . Thus 〈X, f−1(B), ∅〉 ∈ F1(τ). Thus F1 is
a functor. ¤

Theorem 4.4. Define F2 : Top → ITop by

F2(X, τ) = (X,F2(τ)) and F2(f) = f,

where F2(τ) = {〈X, ∅, Ac〉 | A ∈ τ}. Then F2 is a functor.

Theorem 4.5. The functor F1 : Top → ITop is a left adjoint of the functor
G1 : ITop → Top.

Proof. For any (X, τ) in Top, 1X : (X, τ) → G1F1(X, τ) = (X, τ) is a fuzzy
continuous function. Consider (Y, τ ′) ∈ ITop and a fuzzy continuous function
f : (X, τ) → G1(Y, τ ′). In order to show that f : F1(X, τ) = (X, F1(τ)) →
(Y, τ ′) is a continuous function, let B = 〈Y, B1, B2〉 ∈ τ ′. Then B1 ∈ G1(τ ′).
Since f : (X, τ) → G1(Y, τ ′) = (X,G1(τ ′)) is continuous, f−1(B1) ∈ τ . Thus
〈X, f−1(B), ∅〉 ∈ F1(τ). Hence f : F1(X, τ) → (Y, τ ′) is continuous. Therefore
1X is a G1-universal function for (X, τ) in Top. ¤

Theorem 4.6. The functor F2 : Top → ITop is a left adjoint of the functor
G2 : ITop → Top.

Proof. For any (X, τ) in Top, 1X : (X, τ) → G2F2(X, τ) = (X, τ) is a fuzzy
continuous function. Consider (Y, τ ′) ∈ ITop and a fuzzy continuous function
f : (X, τ) → G2(Y, τ ′). In order to show that f : F2(X, τ) = (X, F2(τ)) →
(Y, τ ′) is a continuous function, let B = 〈Y, B1, B2〉 ∈ τ ′. Then (B2)c ∈
G2(τ ′). Since f : (X, τ) → G2(Y, τ ′) = (X, G2(τ ′)) is continuous, (f−1(B2))c =
f−1((B2)c) ∈ τ . Thus 〈X, ∅, f−1(B2)〉 ∈ F2(τ). Hence f : F2(X, τ) → (Y, τ ′)
is continuous. Therefore 1X is a G2-universal function for (X, τ) in Top. ¤
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Let ITop1 the category of all ITS’s whose elements are of the form 〈X, A1, ∅〉,
and continuous functions.

Theorem 4.7. Two categories Top and ITop1 are isomorphic.

Proof. Define F1 : Top → ITop1 by

F1(X, τ) = (X,F1(τ)) and F1(f) = f,

where F1(τ) = {〈X, A, ∅〉 | A ∈ τ}. Consider the restriction G1 : ITop1 →
Top of the functor G1 in Definition 4.1. Then F1 and G1 are functors.
Clearly G1F1(X, τ) = G1(X, F1(τ)) = (X, G1(F1(τ)) = (X, τ). Moreover
F1G1(X, T ) = (X, T ). Hence the result follows. ¤

Theorem 4.8. The category ITop1 is a bireflective full subcategory of ITop.

Proof. Clearly ITop1 is a full subcategory of ITop. Take any (X, T ) in ITop.
Define T ∗ = {〈X, A1, ∅〉 | A = 〈X,A1, A2〉 ∈ T }. Then (X, T ∗) ∈ ITop1 and
1X : (X, T ) → (X, T ∗) is a continuous function. Consider (Y,U) ∈ ITop1

and a continuous function f : (X, T ) → (Y,U). We need only to check that
f : (X, T ∗) → (Y,U) is a continuous function. Let B = 〈Y, B1, ∅〉 ∈ U . Since
f : (X, T ) → (Y,U) is continuous, f−1(B) = 〈X, f−1(B1), f−1(∅)〉 ∈ T . By
definition of T ∗, f−1(B) = 〈X, f−1(B1), ∅〉 ∈ T ∗. Hence f : (X, T ∗) → (Y,U)
is a continuous function. ¤

Corollary 4.9. The category Top is a bireflective full subcategory of ITop.
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