References
- M. S. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos Solitons and Fractals 9 (1998), 517–529 https://doi.org/10.1016/S0960-0779(97)00150-1
- M. S. El Naschie,A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos Solitons and Fractals 19 (2004), 209–236 https://doi.org/10.1016/S0960-0779(03)00278-9
- M. S. El Naschie, On a fuzzy Kahler-like manifold which is consistent with two-slit experiment, Int. Journal of Nonlinear Science and Numerical Simulation 6 (2005), 95–98
- M. S. El Naschie, The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation, Chaos Solitons and Fractals 27 (2006), 9-13 https://doi.org/10.1016/j.chaos.2005.05.010
- A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7
- V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9
- G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), no. 3, 227–238
- I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334
-
S. Kutukcu, D. Turkoglu, and C. Yildiz, Common fixed points of compatible maps of type (
$\beta$ ) on fuzzy metric spaces, Commun. Korean Math. Soc. 21 (2006), no. 1, 89-100 https://doi.org/10.4134/CKMS.2006.21.1.089 - D. Mihet¸, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), 431-439 https://doi.org/10.1016/S0165-0114(03)00305-1
- J. Rodr´ıguez Lopez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007
- R. Saadati and S. Sedghi, A common fixed point theorem for R-weakly commutiting maps in fuzzy metric spaces, 6th Iranian Conference on Fuzzy Systems (2006), 387–391
- B. Schweizer, H. Sherwood, and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5–17
- B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), no. 2, 439–448. https://doi.org/10.1016/j.jmaa.2004.07.036
- Y. Tanaka, Y. Mizno, and T. Kado, Chaotic dynamics in Friedmann equation, Chaos Solitons and Fractals 24 (2005), 407–422. https://doi.org/10.1016/j.chaos.2004.09.034
- L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
Cited by
- Common Fixed Point Theorems for Weakly Compatible Mappings in Fuzzy Metric Spaces Using (JCLR) Property vol.03, pp.09, 2012, https://doi.org/10.4236/am.2012.39145
- Existence and uniqueness of a common fixed point under a limit contractive condition vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-519
- On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space vol.11, pp.1, 2011, https://doi.org/10.5391/IJFIS.2011.11.1.038