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ON REES MATRIX REPRESENTATIONS OF ABUNDANT
SEMIGROUPS WITH ADEQUATE TRANSVERSALS

Zhen Lin Gao, Xian Ge Liu, Yan Jun Xiang, and He Li Zuo

Abstract. The concepts of ∗-relation of a (Γ-)semigroup and Γ̄-adequate
transversal of a (Γ-)abundant semigroup are defined in this note. Then
we develop a matrix type theory for abundant semigroups. We give some
equivalent conditions of a Rees matrix semigroup being abundant and
some equivalent conditions of an abundant Rees matrix semigroup having
an adequate transversal. Then we obtain some Rees matrix representa-
tions for abundant semigroups with adequate transversals by the above
theories.

Introduction

It is well-known that all abundant semigroups constitute an important class
of generalized regular semigroups. An adequate transversal S0 of an abundant
semigroup S is an adequate ∗-subsemigroup of S which for any x ∈ S there
are unique element denoted by x0 and two idempotents denoted by ex, fx such
that x = exx0fx, where exL ∗x0R∗fx (L ∗, R∗ are Green’s ∗-relations). Here
ex and fx are uniquely determined by x. Furthermore, S0 is multiplicative if
fxey ∈ E(S0) for any x, y ∈ S.

By the Γ-semigroup T (see [2, 10, 11]) means that for two non-empty sets T
and Γ in which an element denoted by x, ν respectively under multiplication

x ◦ y = xνy ∈ T satisfying (xαy)βz = xα(yβz)
for any x, y, z ∈ T and ν, α, β ∈ Γ. A Γ-semigroup T is Γ-commutative, if for
any x, y ∈ T, α ∈ Γ, xαy = yαx. Similar to the theory of semigroups, in the
theory of Γ-semigroups we have also the well-known correlate concepts. Here
we will apply them directly. Clearly, any semigroup T is always a Γ-semigroup
for any subset Γ of T or Γ = {1}, where the member 1 is an outer identity.
Conversely, a Γ-semigroup T need not be a semigroup in general.

Received April 4, 2008; Revised June 9, 2009.
2000 Mathematics Subject Classification. 20M10.
Key words and phrases. abundant semigroup, adequate semigroup, adequate transversal,

Γ-adequate transversal.
This research is supported by the Innovation Programm of Shanghai Municipal Education

Commission (08YZ94).

c©2009 The Korean Mathematical Society

481



482 ZHEN LIN GAO, XIAN GE LIU, YAN JUN XIANG, AND HE LI ZUO

We remark that Rees matrix semigroups have been defined in several slightly
different ways. For example, in [9] the matrix semigroup is over an inverse
semigroup. In [12] the matrix semigroup is over a monoid with zero. In [6], J.
Fountain used some (Tα, Tβ)-bisystem Mαβ , where α, β ∈ Γ

′
and an outer zero

and introduced blocked Rees matrix semigroup µ0(Mαβ ; I, Λ,Γ
′
; P ). Here, we

say that a Rees matrix semigroup Sµ is a Rees matrix representation of the
semigroup S if Sµ is isomorphic to S.

Our purpose in this note is to develop a matrix type theory for abundant
semigroups with adequate transversals, that is, to study the conditions of a
Rees matrix semigroup being abundant and the conditions of an abundant Rees
matrix semigroup having an adequate transversal. The above results such that
we may obtain some Rees matrix representations of abundant semigroup with
an adequate transversal. We proceed as follows:

We begin in Section 1 by defining Γ∗-relations on a (Γ-)semigroup and dis-
cussing their properties. Particularly, the relations between Green’s ∗-relations
and Γ∗-relations. By these relations, we show that the relations between a
Γ-semigroup T and a Rees matrix semigroup over T and obtain some equiv-
alent conditions of a Rees matrix semigroup being abundant. In Section 2,
we define the concept of Γ̄-adequate transversals of Γ-abundant semigroups.
Then we show that the relation between Γ̄-adequate transversals and adequate
transversals of Rees matrix semigroups and obtain some equivalent conditions
of an abundant Rees matrix semigroup having an adequate transveral. In Sec-
tion 3, using the results in Sections 1 and 2, for an abundant semigroup S with
an adequate transversal S0, we construct a Rees matrix semigroup Sµ over some
subset T of S. Then we prove that Sµ is a (Γ-)Rees matrix representation of
given semigroup S.

For terminologies not given in this note the reader is referred to [3, 4, 5, 6,
8, 9, 11, 12].

1. The conditions of a Rees matrix semigroup being abundant

We present first some necessary notation and well-known results. For details
consult [6, 9, 11, 12].

Given a semigroup T , non-empty index sets I and Λ and defined a Λ × I
matrix P = (p

λi
)Λ×I over T . By [9], we may obtained a Rees matrix semigroup

denoted by Sµ = µ(T ; I, Λ, P ). It’s elements consist of all triples (x)iλ, where
x ∈ T, (i, λ) ∈ I × Λ with multiplication

(1.1) (∀(x)iλ, (y)jµ ∈ Sµ) (x)iλ(y)jµ = (xp
λj

y)iµ.

In general, Sµ is only a semigroup. Put the set RSµ = Rµ(T ; I,Λ, P ) of all
regular elements of Sµ. It was proved in [9] that RSµ is a regular semigroup
if T is regular. This result, we well generalized to abundant semigroups (see
Theorem 1.9). Now we consider the converse problem.
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Let S be a semigroup with an outer zero. Like [6], we index the set of non-
zero R∗-classes of S by I and the set of non-zero L ∗-classes of S by Λ, so
that we write the R∗-classes as R∗i (i ∈ I) and the L ∗-classes as L∗λ (λ ∈ Λ).
Then we put H∗

iλ = R∗i
⋂

L∗λ for (i, λ) ∈ I × Λ, so that every non-zero H ∗-
class of S is some H∗

iλ and each H∗
iλ is either empty or a H ∗-class. Of course

S \ {0} =
⋃{H∗

iλ; (i, λ) ∈ I × Λ} we denote this structure express of S by
(S, I, Λ).

Further, like [6] we may obtain another structure express denoted by (S, I,
Λ, Γ

′
), where Γ

′
is the set of non-zero D-classes of S which contain idempotents.

We write these D-classes as Dα (α ∈ Γ
′
). Let Iα = {i ∈ I;Dα

⋂
R∗i 6= φ}, Λα =

{λ ∈ Λ; Dα

⋂
L∗λ 6= φ}. In general, I =

⋃
Iα and Λ =

⋃
Λα. When S satisfies

some conditions (for example, S is abundant), they are disjoint union.
Now let the set

(1.2) Γ = {p
λi
∈ T | (i, λ) ∈ I × Λ}

be any subset of S determined by the index pair set I×Λ. Since S is a semigroup
and Γ ⊆ S, so S becomes a Γ-semigroup. Now let T be a subset with zero of
S. In this section we suppose always that T is a Γ-semigroup where the set Γ
defined as (1.2). On Γ-semigroup T (or S) we give the following concept.

Definition 1.1. For Γ-semigroup T (resp. semigroup T ) the Γ ∗-relations on
T denoted by ∀L ∗

Γλ
and ∀R∗

Γi
for i ∈ I, λ ∈ Λ are defined by

(a, b ∈ T )aL ∗
Γλ

b : (x, y ∈ T, v, u ∈ I) for λ ∈ Λ
ap

λv
x = ap

λu
y ⇔ bp

λv
x = bp

λu
y;

(a, b ∈ T )aR∗
Γi

b : (x, y ∈ T, k, t ∈ I) for i ∈ I
xptia = yp

ki
a ⇔ xptib = yp

ki
b.

The following results are clear.

Lemma 1.2. (1) For λ ∈ Λ (i ∈ I), L ∗
Γλ

(R∗
Γi

) is an equivalence relation on
T . We denote the L ∗

Γλ
-class (R∗

Γi
-class) by L∗(λ) (λ ∈ Λ) (R∗(i) (i ∈ I)).

(2) If aL ∗b (aR∗b) for a, b ∈ T , then aL ∗
Γλ

b (aR∗
Γi

b) for any λ ∈ Λ (i ∈ I).

By the structure express (S, I, Λ) of S, we know that for a, b ∈ S, if a, b ∈
L∗λ (R∗i ), then aL ∗b (aR∗b). Conversely, if aL ∗b (aR∗b), then there is a
member λ ∈ Λ (i ∈ I) such that a, b ∈ L∗λ (R∗i ). Thus we may think that the
Green’s ∗-relation L ∗ (R∗) can be written in the form L ∗

λ (aR∗
i b) for some

λ ∈ Λ (i ∈ I).
The following we suppose always that the matrix P = (p

λi
)Λ×I over Γ and

Sµ = µ(T ; I, Λ, P ) is a Rees matrix semigroup over T under the multiplication
(1.1).

Lemma 1.3. (1) For any non-zero elements (a)iλ, (b)jµ ∈ Sµ, if λ = µ and
aL ∗

Γλ
b, then (a)iλL ∗

λ (b)jµ, if i = j and aR∗
Γi

b, then (a)iλR∗
i (b)jµ.

Further, if Sµ is abundant, then the converse case is also true.
(2) We denote the L ∗-classes (R∗-classes) of Sµ by L∗λ (R∗i ). If Sµ is

abundant, then
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(i ∈ I) R∗i = {(x)iλ | x ∈ R∗(i), λ ∈ Λ};
(λ ∈ Λ) L∗λ = {(x)iλ | x ∈ L∗(λ), i ∈ I}.

Proof. (1) Let 0 6= (a)iλ, 0 6= (b)jµ, if λ = µ and aL ∗
Γλ

b, then for (x)vt, (y)uk ∈
Sµ

(a)iλ(x)vt = (a)iλ(y)uk ⇔ (ap
λv

x)it = (ap
λu

y)ik

⇔ t = k and ap
λvx = ap

λuy.

Similarly, for the element (b)jµ = (b)jλ

(b)jλ(x)vt = (b)jλ(y)uk ⇔ t = k and bp
λv

x = bp
λu

y.

Thus by λ = µ and aL ∗
Γλ

b may imply that

(a)iλ(x)vt = (a)iλ(y)uk ⇔ t = k, ap
λv

x = ap
λu

y

⇔ t = k, bp
λv

x = bp
λu

y

⇔ (b)jλ(x)vt = (b)jλ(y)uk.

That is (a)iλL ∗
λ (b)jλ. The another result is dual.

If Sµ is abundant, let e = (c)wl ∈ L∗(a)iλ

⋂
E(S), by e2 = e implies (a)iλe =

(a)iλ so l = λ and if (b)jµ ∈ L∗(a)iλ
= L∗e, similarly µ = λ. Thus we obtain

(a)iλL ∗
λ (b)jλ, that is, for (x)vt, (y)uk ∈ Sµ

(a)iλ(x)vt = (a)iλ(b)uk ⇔ (b)jλ(x)vt = (b)jλ(y)uk.

Computing we may imply that t = k and aL ∗
Γλ

b for λ ∈ Λ.
(2) Let Sµ be abundant, by part (1) we know that for 0 6= (a)iλ, 0 6= (b)jµ∈ S

(a)iλL ∗(b)jµ ⇔ λ = µ and aL ∗
Γλ

b.

So that a, b ∈ L∗(λ). Conversely, if a, b ∈ L∗(λ), then (a)iλ, (b)jλ ∈ L∗λ for any
i, j ∈ I. Thus we have that

L∗λ = {(x)iλ | x ∈ L∗(λ), i ∈ I}(λ ∈ Λ).

The other result is dual. ¤

Corollary 1.4. For (i, λ) ∈ I × Λ, a, b ∈ T
(1) if aL ∗

λ b (aR∗
i b), then aL ∗

Γλ
b (aR∗

Γi
b).

(2) if aL ∗
Γλ

b (aR∗
Γi

b), then ap
λi

L ∗
λ bp

λi
(p

λi
aR∗

i p
λi

b).

Lemma 1.5. For any p
λi
∈ Γ if there are two elements qλ and ri in S such

that p
λi

= qλri, then
(1) the mapping φ defined by

(∀(a)iλ ∈ Sµ) (a)iλφ = riaqλ

is a homomorphism from Sµ to S.
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(2) if Sµ is abundant and φ is an isomorphism, then

(a)iλL ∗
λ (b)jλ in Sµ ⇔ riaqλ L ∗

λ rjbqλ in S

⇔ aL ∗
Γλ

b in T,

(a)iλR∗
i (b)iµinSµ ⇔ riaqλ R∗

i ribqµ in S

⇔ aR∗
Γi

b in T.

Proof. (1) Since S is a semigroup, so φ is a mapping from Sµ to S. For
(a)iλ, (b)jµ ∈ Sµ,

[(a)iλ(b)jµ]φ = (ap
λj

b)iµφ = riap
λj

bqµ

= (riaqλ)(rjbqµ) = (a)iλφ · (b)jµφ.

(2) By Lemma 1.3, we obtain directly this result. ¤

The following concepts are different from that in the theory of Γ-semigroups.

Definition 1.6. An element a ∈ T is a p
λi

-regular element means that ap
λi

a =
a. The set of all p

λi
-regular elements of T is denoted by V (p

λi
). Let a, b ∈

V (p
λi

) if a and b are p
λi

-commutative (i.e., ap
λi

b = bp
λi

a), then we say that a
and b are two p

λi
-commutative regular elements. Let the set

CV (p
λi

) = {a ∈ V (p
λi

);∀x ∈ V (p
λi

), ap
λi

x = xp
λi

a},
then CV (p

λi
) is called the center of V (p

λi
). T is called Γ-abundant if for any

(i, λ) ∈ I × Λ, L∗(λ)
⋂

V (p
λi

) 6= φ and R∗(i)
⋂

V (p
λi

) 6= φ. The Γ-abundant
semigroup T is called Γ-adequate, if V (p

λi
) = CV (p

λi
) for any (i, λ) ∈ I × Λ.

Particularly, for only one p
λi
∈ Γ we have the concepts of p

λi
-abundant and

p
λi

-adequate.

Clearly, since S is a semigroup, so the set V (p
λi

) is the set of inverse ele-
ments of the non-zero element p

λi
for (i, λ) ∈ I × Λ. T is Γ-abundant (ade-

quate) if and only if for any p
λi
∈ Γ, T is p

λi
-abundant (adequate). If T is

abundant (adequate), then by Lemma 1.3 and Corollary 1.4, T is necessarily
Γ-abundant (adequate), but the converse case is not always true.

Lemma 1.7. If T is Γ-adequate, then |L∗(λ)
⋂

V (p
λi

)| = |R∗(i)⋂
V (p

λi
)| =1

for any p
λi
∈ Γ.

Proof. Let a1, a2 ∈ L∗(λ)
⋂

V (p
λi

) then 0 6= a1L ∗
Γλ

a2 6= 0. By Corollary 1.4,
a1pλi

L a2pλi
implies that a1 = a1pλi

a1L a2pλi
a1 = a1pλi

a2L a2pλi
a2 = a2 by

V (p
λi

) = CV (p
λi

). Since p
λi
∈ V (ak) (k = 1, 2), so by a1L a2 implies a1pλi

=
a2pλi

. Thus we have that a1 = a1pλi
a1 = a2pλi

a1 = a1pλi
a2 = a2pλi

a2 = a2.
Dually, we can show that the other result for any p

λi
∈ Γ. ¤

Lemma 1.8. (1) A non-zero element (a)iλ in Sµ is regular if and only if
a ∈Reg(S) (the regular element set of S) and (∃ (j, µ) ∈ I × Λ)

p
λj

Tpµi

⋂
V (a) 6= φ.
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(2) A non-zero element (a)iλ in Sµ is an idempotent if and only if a ∈ V (p
λi

).
(3) Two idempotents (a)iλ, (b)jµ are commutative if and only if (i, λ) = (j, µ)

and a, b are p
λi

-commutative regular elements.

Proof. Here we omit the checking process of part (1) to part (3). ¤

Theorem 1.9. The following are equivalent:
(1) Sµ is abundant.
(2) T is Γ-abundant.
(3) P is an abundant matrix (i.e., each row and each column of P contain

a regular element of S).

Proof. By Definition 1.6, Lemma 1.8, it is easy to show that they are equivalent.
We here omit this proof. ¤

Theorem 1.10. If T is Γ-abundant, then the following equivalent:
(1) Sµ is adequate.
(2) T is Γ-adequate where the Gamma set Γ denoted by (1.2) and satisfies

that I = Λ, |V (pii)| = 1 for any i ∈ I and p
λi

= 0 for λ 6= i, i, λ ∈ I.

Proof. (1) ⇒ (2) Let Sµ be adequate, then E(Sµ) is a semilattice. For 0 6=
(a)iλ, 0 6= (b)jµ ∈ E(Sµ) computing we know that i = j and λ = µ and
a, b ∈ V (p

λi
). Since the L ∗-(R∗-)class L∗λ(R∗i ) of Sµ has only an idempotent, so

|V (p
λi

)| = 1 and CV (p
λi

) = V (p
λi

). Suppose that λ 6= i, and i ∈ Λ (or λ ∈ I),
then L∗i has an idempotent (b)ji for some j ∈ I. Since for (a)iλ ∈ L∗i

⋂
E(Sµ)

and (b)ji ∈ L∗i
⋂

E(Sµ), (a)iλ(b)ji = (b)ji(a)iλ. So we imply that i = j = λ. It
is a contradiction. Thus we obtain that I = Λ and |CV (pii)| = 1 for any i ∈ I.
Since H∗

ii = L∗i
⋂

R∗i has only an idempotent so by [6, Lemma 1.12] H∗
ii is a

cancellative monoid with the identity denote by (e)ii. So we may write

E(Sµ) = {(ei)ii | i ∈ I = Λ, ei ∈ V (pii) and |V (pii)| = 1}⋃{0}.

Let (ei)ii, (fj)jj ∈ E(Sµ), i 6= j by E(Sµ) is a semilattice we obtain (eipij fj)ij =
(fjpjiei)ji and i 6= j, it is necessarily that eipij fj = fjpjiei = 0. Suppose that
pij 6= 0. Since T is Γ-abundant so L∗(j)

⋂
V (pij ) 6= φ. Let a ∈ L∗(j)

⋂
V (pij ),

by Theorem 1.9 and Lemma 1.8, (a)ij ∈ L∗i
⋂

E(Sµ) and i 6= j, i, j ∈ I. Since
E(Sµ) has above express, it is also a contradiction. So we know that pij = 0.
Similarly, we can prove pji = 0 for i 6= j, i, j ∈ I. Concluding we know that
Γ satisfies the following conditions: I = Λ, |V (pii)| = 1 for i ∈ I, p

λi
= 0

for λ 6= i, i, λ ∈ I. Finally, since T is Γ-abundant, by the above results we
know V (pii) = CV (pii) for i ∈ I, and V (p

λi
) = V (0) = CV (0) = CV (p

λi
) for

λ 6= i, i, λ ∈ I. So T is Γ-adequate.
(2) ⇒ (1) Suppose that Γ is as required and T is Γ-adequate, then E(Sµ)

can be written in the form

E(Sµ) = {(ei)ii|i ∈ I, ei ∈ V (pii), |V (pii)| = 1}⋃{0}.
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It is easy to check that E(Sµ) is a semilattice with zero. Thus Sµ is adequate.
¤

The above results (see Theorems 1.9 and 1.10) generalized the corresponding
results in [6] and [9].

Corollary 1.11. Sµ contains an adequate subsemigroup S0
µ if and only if the

matrix P = (p
λi

)Λ×I satisfies conditions
10 There is a subset Ī× Ī ⊆ I × Λ (or Λ̄× Λ̄ ⊆ I × Λ ).
20 On Ī× Ī, |V (p

īī
)| = 1 (̄i ∈ Ī) and p

īj̄
= 0 (̄i, j̄ ∈ Ī, ī 6= j̄).

2. The conditions of an abundant Rees matrix semigroup
having an adequate transversal

In this section the semigroup S and Γ-semigroup T , the sets I,Λ, Γ =
{p

λi
| (i, λ) ∈ I × Λ}, the matrix P = (p

λi
)Λ×I and the Rees matrix semi-

group Sµ = µ(T ; I, Λ, P ) are as required in Section 1. We continue to discuss
the relations between a Γ̄-adequate transversal of T and adequate transversals
of Sµ and S. We begin by defining the following concept.

Definition 2.1. Let T 0 be a Γ̄-adequate subsemigroup of T , where Γ̄ ⊆ Γ. By
Theorem 1.10, we may denote the subset Γ̄ of Γ by
(2.1)
Γ̄ = {p

λ̄ī
∈ Γ | (̄i, λ̄) ∈ Ī× Ī, |V (p

īī
)| = 1 for ī ∈ Ī, p

λ̄ī
= 0 if λ̄ 6= ī, ī, λ̄ ∈ Ī}.

We denote an element of T 0 by x0. If for any x ∈ T and (i, λ) ∈ I × Λ there
are a unique element x0 ∈ T 0 and two element a ∈ CV (p

λī
) and b ∈ CV (p

īi
)

for a unique (̄i, ī) ∈ Ī × Ī, such that x can be uniquely written in the form
x = bp

īī
x0p

īī
a,

where bL ∗
Γī

x0R∗
Γī

a. Then T 0 is called a Γ̄-adequate transversal of T .

For this concept we have:

Lemma 2.2. (1) bR∗
Γī

xL ∗
Γī

a, 00 = 0, otherwise the element x0 is uniquely
determined by x and (i, λ).

(2) The elements a and b are uniquely determined by x and (i, λ). We denote
them by ax and bx.

Proof. (1) By Lemma 1.3 and Definition 2.1 the results may be directly ob-
tained.

(2) Let 0 6= x ∈ T , suppose that there are b1, b2 ∈ CV (p
īi
) such that bkL ∗

Γī
x0

(k = 1, 2) and satisfy all conditions in Definition 2.1. Then p
īi
b1 = p

īi
b2pīi

b1

and p
īi
b2 = p

īi
b1pīi

b2 imply that p
īi
b1Rp

īi
b2 and p

īi
b2 ∈ V (p

īi
b1). Since for

any (p
īi
b1)

′ ∈ V (p
īi
b1) we have p

īi
b1L (p

īi
b1)

′
. So we obtain that p

īi
b1H p

īi
b2.

This implies p
īi
b1 = p

īi
b2 and so b1 = b1pīi

b1 = b1pīi
b2 = b2pīi

b1 = b2 by
b1, b2 ∈ CV (p

īi
). The other case is dual. ¤

By Lemma 2.2, we may denote the sets by
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AΛ =
⋃
ī∈Ī

{ax ∈ T | ∀x ∈ T ∃| ax ∈ R∗(λ)
⋂

CV (p
λī

), ∀λ ∈ Λ}⋃{0},
BI =

⋃
ī∈Ī

{bx ∈ T | ∀x ∈ T ∃| bx ∈ L∗(i)
⋂

CV (p
īi
), ∀i ∈ I } ⋃{0}.

To our object we omit the discussion for the sets AΛ and BI . Furthermore, we
introduce the following concept.

Definition 2.3. Let T 0 be a Γ̄-adequate transversal of T . If for any ax ∈
AΛ, by ∈ BI and p

λi
∈ Γ, there is a unique p

īī
∈ Γ̄ such that if axp

λi
by 6= 0,

then
axp

λi
by ∈ V (p

īī
) ⊆ T 0 (i.e., AΛΓBI ⊆

⋃
ī∈Ī

V (p
īī
)
⋃{0}).

Then T 0 is called a Γ multiplicative Γ̄-adequate transversal of T .

In the following, T 0 is always a Γ̄-adequate transversal of T where Γ̄ is given
by (2.1).

Lemma 2.4. (1) Let S0
µ = {(x0)̄īi|x0 ∈ T 0, (̄i, ī) ∈ Ī × Ī}. Then S0

µ is an
adequate transversal of Sµ.

(2) In part (1), if T 0 is a Γ -multiplicative, then S0
µ is multiplicative.

Proof. (1) By Theorem 1.9, we know that Sµ is abundant. Let (x0)ī̄i, (y0)λ̄λ̄ ∈
S0

µ then

(x0)ī̄i(y0)λ̄λ̄ = (x0p
īλ̄

y0)̄iλ̄ =
{

(x0p
īī
y0)ī̄i ī = λ̄

0 ī 6= λ̄.

Since T 0 is Γ̄-semigroup with zero, so (x0)ī̄i(y0)λ̄λ̄ ∈ S0
µ. Since L∗̄

i

⋂
S0

µ 6=
φ and R∗̄

i

⋂
S0

µ 6= φ. Thus S0
µ is a ∗-subsemigroup. Clearly, Theorem 1.10

demonstrates that S0
µ is adequate. Since T 0 is a Γ̄-adequate transversal of T ,

so for any x ∈ T and (i, λ) ∈ I × Λ, x can be uniquely written in the form
x = bxp

īī
x0p

īī
ax, where ax ∈ AΛ, bx ∈ BI , (̄i, ī) ∈ Ī × Ī and bxL ∗

Γī
x0R∗

Γī
ax.

Thus for any (x)iλ ∈ Sµ, (x)iλ can be also uniquely written in the form

(x)iλ = (bxp
īī
x0p

īī
ax)iλ = (bx)īi(x0)ī̄i(ax)īλ,

where of course (bx)īiL
∗̄
i
(x0)̄īiR

∗̄
i
(ax)īλ. Since ax ∈ AΛ and bx ∈ BI , so (ax)̄iλ

and (bx)īi are uniquely determined by (x)iλ and (ax)̄iλ, (bx)īi ∈ E(S). Thus
S0

µ is indeed an adequate transversal of Sµ.
(2) Since T 0 is Γ-multiplicative, for any ax ∈ AΛ, by ∈ BI and p

λi
∈

Γ, axp
λi

by ∈ V (p
īī
) for a unique (̄i, ī) ∈ Ī × Ī (or axp

λi
by = 0), so for any

f(x)iλ
= (ax)̄iλ and e(y)jµ

= (by)jλ̄

f(x)iλ
e(y)jµ

= (ax)īλ(by)jλ̄ = (axp
λj

by)īλ̄ =
{

(axp
λj

by)ī̄i ī = λ̄
0 ī 6= λ̄,

where axp
λj

by ∈ V (p
īī
) ⊆ T 0 for ī = λ̄, and so f(x)iλ

e(y)jµ
∈ E(S0

µ). Thus S0
µ

is multiplicative. ¤
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Lemma 2.5. If S0
µ is an adequate transversal of Sµ, then

(1) T contains a Γ̄-adequate transversal T 0 for some Γ̄ ⊆ Γ.
(2) If S0

µ is multiplicative, then T 0 is Γ-multiplicative.

Proof. (1) By Theorem 1.9 we know that T is Γ-abundant. Let (x)iλ ∈ S0
µ

then the element x is belongs to some subset T 0 of T . By Theorem 1.10 we
can always denote the set by

S0
µ = {(x0)̄iλ̄|x0 ∈ T 0, (̄i, λ̄) ∈ Ī× Ī},

where (x0
īλ̄

) means that (x)0iλ ∈ S0
µ is uniquely determined by (x)iλ and Ī × Ī

is some subset of I × Λ. Since S0
µ is an adequate subsemigroup of Sµ, by

Theorem 1.10 T 0 is Γ̄-adequate subsemigroup of T , so we may suppose that

Γ̄ = {p
λ̄ī
|(̄i, λ̄) ∈ Ī × Ī} ⊆ Γ satisfies p

λ̄ī
=

{
p

īī
λ̄ = ī

0 λ̄ 6= ī
and |V (p

īī
)| = 1 for

any ī ∈ Ī. This time we may write the set

E(S0
µ) = {(a0)ī̄i | a0 ∈ V (p

īī
), ī ∈ Ī or a0 = 0}.

Since S0
µ is an adequate transversal of Sµ, so for any (x)iλ ∈ Sµ (x)iλ can be

uniquely written in the form

(x)iλ = (b)īi(x0)̄īi(a)īλ = (bp
īī
x0p

īī
a)iλ,

where (b)īi denote e(x)iλ
and (a)īλ denote f(x)iλ

. This implies that x =
bp

īī
x0p

īī
a by the unique property of e(x)iλ

and f(x)iλ
, we know that b = bx ∈ BI

and a = ax ∈ AΛ, and so that for any x ∈ T , x can be uniquely written in
the form x = bxp

īī
x0p

īī
ax, where x0 ∈ T 0, bx ∈ BI and ax ∈ AΛ are uniquely

determined by x and (i, λ). Thus T 0 is indeed a Γ̄-adequate transversal of T .
(2) If S0

µ is multiplicative in part (1), then for any f(x)iλ
= (ax)īλ and

e(y)jµ
= (by)jλ̄, where ax ∈ AΛ, by ∈ BI ,

f(x)iλ
e(y)jµ

= (ax)̄iλ(by)jλ̄ = (axp
λj

by )̄iλ̄ =
{

(axp
λj

by)ī̄i if ī = λ̄
0 if ī 6= λ̄

∈ E(S0
µ).

So axp
λj

by ∈ V (p
īī
) ⊆ T 0 (or axp

λj
by = 0) for any ax ∈ AΛ, by ∈ BI and

p
λj
∈ Γ, that is, T 0 is a Γ-multiplicative Γ̄-adequate transversal of T . ¤

According as the results of Lemmas 2.4 and 2.5 we obtain:

Theorem 2.6. (1) The Γ-semigroup T contains a Γ̄-adequate transversal T 0

as in Lemma 2.4 if and only if Sµ contains an adequate transversal S0
µ =

{(x0)ī̄i | x0 ∈ T 0, (̄i, ī) ∈ Ī × Ī} with the idempotents semilattice E(S0
µ) =

{(a0)ī̄i | a0 ∈ CV (p
īī
), (̄i, ī) ∈ Ī× Ī or a0 = 0} for some subset Ī× Ī ⊆ I × Λ.

(2) T 0 is Γ-multiplicative if and only if S0
µ is multiplicative where T 0 and

S0
µ as that in part (1).

For the relations between the semigroup S and the Rees matrix semigroup
Sµ = µ(T ; I, Λ, P ), we have:
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Theorem 2.7. If the mapping φ as in Lemma 1.5 is a semigroup isomorphism
from Sµ to S, then the following arguments hold.

(1) S is abundant if and only if and only if T is Γ-abundant if and only if
Sµ is abundant.

(2) S contains an adequate transversal S0 if and only if T contains a Γ̄-
adequate transversal T 0 where Γ̄ as above required if and only if Sµ contains
an adequate transversal S0

µ = {(x0)ī̄i | x0 ∈ T 0, ī ∈ Ī}.
(3) S0 is multiplicative if and only if T 0 is Γ-multiplicative if and only if S0

µ

is multiplicative where S0, T 0, S0
µ are as that in part (2).

Proof. (1) Since φ is an isomorphism from Sµ to S, by Lemma 1.5 and Theo-
rem 1.9 we directly obtain part (1).

(2) Let S0 be an adequate transversal of S. Since φ is an isomorphism
from Sµ to S and for any (t)iλ ∈ Sµ, where t ∈ T , (t)iλφ = ritqλ = x.
Let x = exx0fx so for x0 ∈ S0, ex, fx ∈ E(S). There are a unique element
t0 ∈ T 0 which is a subset of T and two elements bt, at ∈ T . Such that for some
(i, v), (j, µ), (k, λ) ∈ I × Λ

(bt)ivφ = ex, (t0)jµφ = x0, (at)kλφ = fx.

Since x = exx0fx where exL ∗x0R∗fx so that

x = exx0fx = ribtqv · rjt
0qµ · rkatqλ = ribtpvj t

0p
uk

atqλ.

Since T is a Γ semigroup, so t = btpvj t
0p

uk
at ∈ T and such that (t)iλφ = x =

exx0fx = (bt)ivφ · (t0)jµφ · (at)kλφ = [(bt)iv(t0)jµ(at)kλ]φ. This implies that

(t)iλ = (bt)iv(t0)jµ(at)kλ.

Further, by the fact that S0 is an adequate transversal of S, like the proof
of Lemma 2.5. We may prove that Sµ has an adequate transversal S0

µ =
{(t0)̄īi | t0 ∈ T 0, (̄i, ī) ∈ Ī× Ī}, where T 0 is an Γ̄-adequate transversal of T and
Γ̄ = {p

īλ̄
| (̄i, λ̄) ∈ Ī× Ī} as required in (2.1). Here we omit this proof.

Conversely, if T 0 is a Γ̄-adequate transversal of T by Theorem 2.6, then S0
µ

as above described is an adequate transversal of Sµ. Since φ is a semigroup
isomorphism from Sµ to S, so the set

S0 = {rīt
0qī = x0 ∈ S | ∀ t0 ∈ T 0, (̄i, ī) ∈ Ī× Ī}

is necessarily an adequate transversal of S. In fact, let (t)iλφ = ritqλ = x ∈ S,
by Theorem 2.6

(t)iλ = (bt)īi(t0)ī̄i(at)̄iλ = (btpīī
t0p

īī
at)iλ

implies that t = btpīī
t0p

īī
at and

x = ritqλ = ribtpīī
t0p

īī
atqλ = (ribtqī)(rīt

0qī)(rīatqλ) = exx0fx.

Since bt ∈ BI , at ∈ AΛ, so
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e2
x = ribtqīribtqī = ribtpīi

btqī = ribtqī = ex.

Similarly, f2
x = fx. Since (bt)īiL

∗(t0)̄īiR
∗(at)̄iλ and φ is an isomorphism by

Lemma 1.5(2), so that exL ∗x0R∗fx.
(3) By part (2), similar to the proof Lemma 2.5, we may obtain the part

(3). ¤
In the next section we will prove existence of such a Γ-semigroup T in The-

orem 2.7, and so we may give a Rees matrix representation of an abundant
semigroup S with the adequate transversal S0. The following is an example to
show the application of Theorem 2.6.

Example 2.8. Consider the monoid T with zero a which is not abundant
under multiplication

T a b c d
a a a a a
b a a b b
c a b c d
d a b d c

P = (p
λi

)Λ×I =
(

c d
d d

)
.

According to the structure express (T, I, Λ), here let I = {1, 2} = Λ, where
R∗1 = {c, d}, R∗0 = {a}, R∗2 = {b} and L∗1 = {c, d}, L∗0 = {a}, L∗2 = {b}. There-
fore we have H∗

11 = {c, d} is a non-zero group with identity c. H∗
22 contains no

idempotent, H∗
iλ = φ (i 6= λ, i, λ ∈ I = {1, 2}). According (i, λ) positions, let

Γ = {p
λi
| (i, λ) ∈ I × Λ} where p

λi
is as in the above matrix P . Clearly, the

matrix P is abundant. By Theorem 1.9 we know that T is Γ-abundant and so
that Tµ = µ(T ; I, Λ, P ) is also abundant. Computing by Lemma 1.3 and Corol-
lary 1.4, here L∗(1) = L∗1, L

∗(2) = L∗2. Similarly, R∗(1) = R∗1, R
∗(2) = R∗2, and

V (p11) = {c}, V (p22) = V (p12) = V (p21) = {d}. We will see that Γ-abundant
semigroup T has a Γ̄-adequate transversal. Put Γ̄ = {p11}  Γ and T 0 = T ,
then Γ̄ satisfies the conditions in Theorem 2.6, so by Theorem 2.6, T 0 is a
Γ̄-adequate transversal of T . In fact, for any x ∈ T and (i, λ) ∈ I × Λ, under
the sense of Definition 2.1 according (i, λ) position x can be uniquely written
in the form

a = ap11ap11a where a ∈ AΛ

⋂
BI , a0 = a

b = cp11bp11c c ∈ V (p11), c ∈ BI

⋂
AΛ, b0 = b

= dp11bp11d d ∈ V (p12) = V (p21), d ∈ BI

⋂
AΛ, b0 = b

= cp11bp11d c ∈ V (p11), d ∈ V (p12), c ∈ BI , d ∈ AΛ, b0 = b
= dp11bp11c d ∈ V (p21), c ∈ V (p11), d ∈ BI , c ∈ AΛ, b0 = b

c = cp11cp11c c ∈ V (p11), c ∈ AΛ

⋂
BI , c0 = c

= dp11cp11d d ∈ V (p12) = V (p21), d ∈ AΛ

⋂
BI , c0 = c

= cp11dp11d c ∈ V (p11), d ∈ V (P12), c ∈ BI , d ∈ AΛ, c0 = d
= dp11dp11c d ∈ V (p21), c ∈ V (P11), d ∈ BI , c ∈ AΛ, c0 = d

d = cp11dp11c c ∈ BI , d ∈ AΛ, d0 = d
= dp11dp11d d ∈ BI , c ∈ AΛ, d0 = d
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= dp11cp11c d ∈ V (p21), c ∈ V (P11), d ∈ BI , c ∈ AΛ, d0 = c
= dp11dp11c d ∈ V (p21), c ∈ V (P11), d ∈ BI , c ∈ AΛ, c0 = d.

By Theorem 2.6 we obtain an adequate transversal T 0
µ of Tµ as follows

T 0
µ = {(x0)11 | x0 ∈ T 0}.

For any (x)iλ ∈ Tµ, (x)iλ can be uniquely written in the form (x)iλ = (bx)i1

(x0)11 (ax)1λ . Here we omit these expressions. But since there are ad = c and
bd = d such that adp11bd = c · c · d = d 6∈ V (p11), so T 0 is not Γ-multiplicative
by Theorem 2.6 and we know that T 0

µ is also not multiplicative.
Clearly, since |T | = 4, |Tµ| = 13, so if there is a mapping φ as that in

Lemma 1.5 then φ is impossible an isomorphism from Tµ to T . From this
example we may see that for a semigroup T being not abundant, there possible
is a set Γ̄ such that T becomes a Γ̄-adequate semigroup and such that the Rees
matrix semigroup Tµ = µ(T, I, Λ, P ) over T may be an abundant semigroup
and it may contain an adequate transversal T 0

µ .

3. Rees matrix representations of an abundant semigroup
with an adequate transversal

In this section S is always an abundant semigroup with an adequate transver-
sal S0. Our aim in this section is to give some Rees matrix representations of
S. We begin by blocked Rees matrix semigroups to give a representation of S.

Lemma 3.1. Let 0 6= e ∈ E(S) and aL ∗e (aR∗e). Then a ∈ Se (eS).

Proof. By aL ∗e implies aeL e and so a = ae ∈ Se. Dually, if aR∗e, then
a ∈ eS. ¤
Lemma 3.2. Let 0 6= x, 0 6= y ∈ S. If xy 6= 0, then xy ∈ R∗x

⋂
L∗y.

Proof. Let e, f ∈ E(S) with eR∗x, fL ∗y, then x ∈ eS, y ∈ Sf so that xy ∈
eS

⋂
Sf and by Lemma 3.1 xy ∈ R∗e

⋂
R∗f = R∗x

⋂
R∗y. ¤

Lemma 3.3. Let 0 6= x, 0 6= y ∈ S and e, f ∈ E(S) with xR∗e, yL ∗f . Then
yx = 0 if and only if fe = 0.

Proof. If yx = 0, then yx = y0, so that fx = f0 and then fx = 0x, which
gives fe = 0e = 0. If fe = 0, then yx = yfex = 0 by y = yf and x = ex. ¤

By the process of shaping a semigroup into the form of blocked Rees matrix
semigroup in [6], we may obtain a blocked Rees matrix representation of S
when the condition (M) in [6] holds. By Lemma 3.1 to 3.3 we may show this
point. Now suppose that we have shaped S into a blocked set denoted by
Sµ = µ(Mαβ ; I, Λ, Γ

′
) where Γ

′
is the set of non-zero D-classes of S which

contain idempotents and each Mαβ is a torsion-free (Tα, Tβ)-bisystem where
Tα, Tβ are two cancellative monoid with an outer zero denoted by 0.

Let α, β, γ ∈ Γ
′
. Suppose that Mαβ , Mβγ are both non-empty. If a ∈

Mαβ , b ∈ Mβγ , then aL ∗eβR∗b and it follows from Lemma 3.3 that ab 6= 0.
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Since ab ∈ aS
⋂

Sb ⊆ eαS
⋂

Seγ , we have eαR∗abL ∗eγ by Lemma 3.1. Thus
ab ∈ R∗i(α)

⋂
L∗λ(γ) = Mαγ and Mαγ 6= φ. We now define ϕαβγ : Mαβ

⊗
Mβγ →

Mαγ by (a ⊗ b)ϕαβγ = ab (see [5, ch. 7]). It is easy to see that this is a well-
defined (Tα, Tβ)-homomorphism (see [6]) and that the condition (M) in [6] is
satisfied.

For each α ∈ Γ
′
we define the sets as

Iα = {i ∈ I; Dα

⋂
R∗i 6= φ}; Λα = {µ ∈ Λ; Dα

⋂
L∗λ 6= φ}.

Since S is an abundant semigroup, so by [6] we know that I =
⋃

Iα and Λ =⋃
Λβ are disjoint union. Like [6], we define P as the Λ× I matrix (pλj) where

for (λ, j) ∈ Λα× Iβ , p
λj

= qα
λrβ

j , qα
λ ∈ H∗

i(α),λ and rβ
j ∈ H∗

j,λ(β) where qα
λ , rβ

j are
regular elements and qα

λrα
j = rα

j qα
λ = eα (eα is the identity of Mαα). So that

qα
λ ∈ R∗i(α), rβ

j ∈ L∗λ(β) and hence either qα
λrβ

j = 0 or qα
λrβ

j ∈ R∗i(α)

⋂
L∗λ(β) =

H∗
i(α),λ(β) = Mαβ . Thus any non-zero entry in the (α, β)-block of P is a member

of Mαβ . By [6] we know that Sµ = µ0(Mαβ ; I, Λ, Γ
′
;P ) (see [6]) is a blocked

Rees matrix semigroup.
Note, here Sµ = µ0(Mαβ ; I,Λ, Γ

′
; P ) is not necessarily a PA blocked Rees

matrix semigroup, that is, the abundant semigroup Sµ need not to satisfy the
conditions (U) and (R) in [6], so Sµ is not necessarily a primitive abundant
semigroup.

We next show that the bijection φ : Sµ → S given by

(3.1) 0φ = 0 and (a)iλφ = rα
i aqβ

λ((i, λ) ∈ Iα × Λβ , a ∈ Mαβ)

is an isomorphism from Sµ to S. Clearly, S\{0} =
⋃{H∗

iλ | (i, λ) ∈ I ×Λ} and
S is disjoint unions, so it is straightforward to show that φ is a bijection and
it is also an isomorphism. Thus we have already proved that Sµ is a blocked
Rees matrix representation of S. It is such that we may obtain the following
representation theorem. It is a generalization of [6, Theorem 3.8].

Theorem 3.4. Let S be an abundant semigroup with an adequate transversal
S0 then S has a blocked Rees matrix representation Sµ = µ0(Mαβ ; I,Λ, Γ

′
; P )

with an adequate transversal S0
µ isomorphic to S0. Furthermore, S0 is multi-

plicative if and only if S0
µ is multiplicative.

Proof. We first show that Sµ has adequate transversal S0
µ isomorphic to S0.

For any x0 ∈ S0, since φ is an isomorphism from Sµ to S, so there is a unique
element denoted by (tx0)iλ ∈ Sµ such that (tx0)iλφ = rα

i tx0qβ
λ = x0 for (i, λ) ∈

Iα×Λβ and tx0 ∈ Mαβ for some α, β ∈ Γ
′
. Similar to the proof of Theorem 2.7,

there is a subset Ī× Ī of I × Λ such that

S0
µ = {(tx0)īλ̄ | ∀x0 ∈ S0 (tx0)īλ̄φ = x0, (̄i, λ̄) ∈ Ī× Ī}.

Since φ is an isomorphism, S0
µ is an adequate ∗-subsemigroup of Sµ, and for

any x ∈ S there are a unique element x0 ∈ S0 and two idempotents ex, fx in
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E(S) such that x = exx0fx, where exL ∗x0R∗fx. We denote xϕ−1, exφ−1 and
fxφ−1 by (tx)iλ, e(tx)iλ

and f(tx)iλ
respectively, then

e(tx)iλ
, f(tx)iλ

∈ E(Sµ) and e(tx)iλ
R∗(tx)iλL ∗f(tx)iλ

.

The element (tx)iλ of Sµ can be uniquely written in the form

(tx)iλ = e(tx)iλ
(tx)0iλf(tx)iλ

= e(tx)iλ
(tx0)īλ̄f(tx)iλ

,

where e(tx)iλ
L ∗(tx0 )̄iλ̄R∗f(tx)iλ

. Like Theorem 2.7 we may write e(tx)iλ
=

(btx
)īi, f(tx)iλ

= (atx
)īλ, then (tx)iλ = (btx

)īi(tx0)ī̄i(atx)īλ. Since (tx)iλ is any
element of Sµ, we know that S0

µ is an adequate transversal of Sµ. We next show
that S0 is multiplicative if and only if S0

µ is also. We denote yφ−1 = (by)jµ for
y ∈ S and eyφ−1 = e(by)jµ

, then by φ being an isomorphism, fxey ∈ E(S0), if
and only if f(ax)iλ

e(by)jµ
∈ E(S0

µ). It is as required. ¤

The blocked Rees matrix semigroup is over (Tα, Tβ)-bisystem Mαβ (α, β ∈
Γ
′
) where Tα = Mαα, Tβ = Mββ are two cancellative monoid with an outer zero.

Using Mαβ = H∗
i(α),λ(β) (α, β ∈ Γ

′
), we define the set T =

⋃{Mαβ | α, β ∈ Γ
′}.

Thus we may think that the blocked Rees matrix semigroup over T . Using
here expression that is Sµ = µ(T, I, Λ, P ), where I × Λ =

⋃{Iα × Iβ | α, β ∈
Γ
′}, T =

⋃{Mαβ | α, β ∈ Γ
′}. But T is not necessarily a semigroup. When

p
λj

= qα
λrβ

j , where qα
λ ∈ H∗

i(α),λ and rβ
j ∈ H∗

j,λ(β), Sµ is isomorphic to S.
It is clear that S and T are Γ-semigroups, where

(3.2)
Γ = {p

λj
; p

λj
= qα

λrβ
j ∈ Mαβ , qα

λ ∈ H∗
i(α), λ,

rβ
j ∈ H∗

j,λ(β), α, β ∈ Γ
′
, (j, λ) ∈ Iβ × Λα}.

under Γ-operation “ ◦ ” as that for any x, y ∈ S, p
λi
∈ Γ

(3.3) x ◦ y = xp
λi

y =
{

xp
λi

y if x ∈ Mαβ , y ∈ Mγδ, pλi
∈ Mβγ ,

0 otherwise.

So we say that Sµ = µ(T, I, Λ, P ) is a Rees matrix semigroup over Γ-semigroup
T . Like Theorem 2.7 we can prove the following representation theorem.

Theorem 3.5. Let S be an abundant semigroup with an adequate transver-
sal S0. Then S has a Rees matrix representation Sµ = µ(T ; I, Λ, P ) over
Γ-semigroup T and the following argument hold.

(1) Sµ contains an adequate transversal S0
µ may be expressed by

S0
µ = {(x0)īλ̄|x0 ∈ T 0, (̄i, λ̄) ∈ Ī× Ī}

and S0
µ is isomorphic to S0 where T 0 is a Γ̄-adequate transversal of T and Γ̄

as (2.1).
(2) S0 is multiplicative if and only if S0

µ is multiplicative.
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Proof. We have proved that Sµ = µ(T ; I, Λ, P ) is a Rees matrix representation
of S. By the proof of Lemma 2.4, we can similarly obtain that Sµ contains
an adequate transversal denoted by S0

µ, and S0
µ is isomorphic to S0. The

following we show that S0
µ may be expressed as required form. In fact, let

T 0 = {t0 ∈ T | ∀x0 ∈ S0,∃| t0 ∈ T,3 x0 = rα
ī
t0qβ

λ̄
}. Since S0 is a subsemigroup

of S, let x0 = rα
ī
t0xqβ

λ̄
, y0 = rγ

j̄
t0yqv

µ̄ ∈ S0, where (̄i, λ̄), (j̄, µ̄) ∈ Ī × Λ̄ ⊆ I × Λ,
then x0y0 = rα

ī
t0xp

λ̄j̄
t0yqv

µ̄ implies that t0xp
λ̄j̄

t0y ∈ T 0. Let Γ̄ = {p
īλ̄
∈ Γ | (̄i, λ̄) ∈

Ī× Λ̄}, since S0 is a subsemigroup of S, so T 0 is necessarily a Γ̄-subsemigroup
of T . Since S0 is adequate by Theorem 1.10, T 0 is Γ̄-adequate and Ī = Λ̄. By
Theorem 2.7, T 0 is a Γ̄-adequate transversal of T and S0

µ may be denoted by

S0
µ = {(t0)ī̄i | t0 ∈ T 0, (̄i, λ̄) ∈ Ī× Ī}

which is an adequate transversal of S
µ
. Since φ|S0

µ
as

(∀(t0)īλ̄ ∈ S0
µ) (t0)̄iλ̄φ = rα

ī
t0qβ

λ̄
= x0 ∈ S0

is an isomorphism from S0
µ to S0. We complete the proof of part (1). By

Theorem 2.7 we know that part (2) holds. ¤

Our final aim in this section is that given a Γ-Rees matrix representation for
semigroup S. This means that taking a some set Γ1 need not be belong to S
and a Λ × I matrix ρ = (ρλi)Λ×I over Γ1 which is called a Γ-Rees matrix, we
can obtain a Γ1-semigroup T for some subset T of S and the Γ1-semigroup S.
Then taking some set Γ2 such that we can obtain a Γ2-Rees matrix semigroup
Tµ denoted by Tµ = µ(T ; I, Λ, ρ) over T . Then we will prove that Γ2-semigroup
Tµ is Γ-isomorphic to Γ1-semigroup S. Since the set T ⊆ S and ρ is over Γ1,
so we call that Tµ is a Γ-Rees matrix representation of S.

Firstly, we recall the concept of Γ-semigroup isomorphism.

Definition 3.6 ([11]). Let T1 be a Γ1-semigroup and T2 be a Γ2-semigroup, a
mapping pair denoted by φ = (φ1, φ2) from (T1, Γ1) to (T2, Γ2) as follows

φ1 : T1 → T2 , φ2 : Γ1 → Γ2

x1 7→ x2 γ1 7→ γ2

If φ satisfies that for any x1, y1 ∈ T1, γ1 ∈ Γ1

(x1γ1y1)φ = x1φ1 · γ1φ2 · y1φ1 = x2γ2y2,
then φ is called a (Γ1,Γ2) homomorphism from T1 to T2. If φ is a surjection
(resp. injection), then φ is called a surjection (resp. injection) homomorphism.
If φ is a bijection, then φ is called a (Γ1,Γ2)-isomorphism from Γ1-semigroup
T1 to Γ2-semigroup T2.

Note here φ is bijective (surjective, injective) means that φ1 and φ2 are
bijective (surjective, injective).

Now, we suppose that S is an abundant semigroup with an adequate trans-
versal S0, then S has the structure express (S; I, Λ, Γ

′
) as Section 1. We denote
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the bijection x 7→ xqβ
λ from H∗

i(α),λ(β) onto H∗
i(α),λ by ρ

λ(β) and denote the
bijection y 7→ rα

i y from H∗
i(α),λ onto H∗

iλ by ρi(α). Then we obtain a bijection

denoted by ρλ(β),i(α) = ρλ(β)ρi(α) : x 7→ rα
i xqβ

λ from H∗
i(α)λ(β) onto H∗

iλ. Let

Γ1 = {ρλ(β)i(α) | ∀(i, λ) ∈ I × Λ, α, β ∈ Γ
′}, and the Γ-Rees matrix ρ denoted

by ρ = (ρλ(β)i(α))Λ×I . Clearly, Γ1 is does not belong to S and the matrix ρ is
not over S. We denote the bijection ρi(α) by xρλ(β) for x ∈ H∗

i(α),λ and denote
the bijection ρi(α) by ρi(α)y for y ∈ H∗

i(α),λ. Then we define an Γ1-operation
“ ◦ ” on S as that for any x, y ∈ S, and ρλ(β)i(α) ∈ Γ1

(3.4) x ◦ y = xρλ(β)i(α)y =
{

xρλ(β)ρi(α)y if x ∈ H∗
i(α),λ(β), y ∈ H∗

i(α)λ,

0 otherwise.

It is clear that the Γ1-operation “ ◦ ” satisfies associative law. Thus we obtain
a Γ1-semigroup S.

Let the set T =
⋃{Mαβ ; α, β ∈ Γ

′}. Then T is also a Γ1-semigroup under
the above multiplication (3.4). Let the set Tµ denoted by

Tµ = µ(T ; I, Λ, ρ) = {(x)iλ | x ∈ T, (i, λ) ∈ I × Λ},
with multiplication for (i(α), λ(β)), (j(γ), µ(v)) ∈ I × Λ

(3.5) (x)iληut(y)jµ =
{

(xqβ
λρλ(β),j(γ)r

γ
j y)iµ if (u, t) = (λ, j),

0 otherwise.

Then it is easy to check that Tµ becomes a Γ2-semigroup, where Γ2 = {ηλi | (i, λ)
∈ I × Λ}. We call Tµ a Γ Rees matrix semigroup. If Tµ is Γ-isomorphic to S,
we call Tµ is Γ Rees matrix representation of S.

Finally, we define a mapping φ = (φ1, φ2) from Γ2-semigroup Tµ to Γ1-
semigroup S as belows

(3.6)
φ1 : Tµ → S , φ2 : Γ2 → Γ1

(x)iλ 7→ rα
i ρλ(α)i(α)xρλ(β)i(β)q

β
λ ηλi 7→ ρλi

Clearly, φ2 is bijective. Since rα
i ρλ(α)i(α)xρλ(β)i(β)q

β
λ = rα

i qα
λrα

i xqβ
λrβ

i qβ
λ =

rα
i xqβ

λ on semigroup S, by Theorem 3.5 we know that φ1 is a semigroup iso-
morphism from µ(T ; I,Λ, P ) to S. Thus we know that φ is a bijection from
Γ2-semigroup Tµ to Γ1-semigroup S. Let (x)i(α),λ(β), (y)j(γ)µ(v) ∈ Tµ, ηut ∈ Γ2

then

[(x)iλ ηut (y)jµ] φ =
{

(xqβ
λρλ(β),j(γ)r

γ
j y)iµφ if (u, t) = (λ, j)

0 otherwise

=
{

rα
i ρµ(α)i(α)xqβ

λρλjr
γ
j yρµ(v)i(v)q

v
µ if (u, t) = (λ, j)

0 otherwise

=
{

rα
i ρµ(α)ρi(α)xqβ

λρλjr
γ
j yρµ(v)ρi(v)q

v
µ if (u, t) = (λ, j)

0 otherwise
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=
{

rα
i qα

urα
i xqβ

λρλjr
γ
j yqv

µrv
i qv

µ if (u, t) = (λ, j)
0 otherwise

=
{

(rα
i xqβ

λ)ρλ(β),j(γ)(r
γ
j yqv

µ) if (u, t) = (λ, j)
0 otherwise.

On the other hand,

(x)iλφρut(y)juφ =
{

(rα
i xqβ

λ)ρλ(β),j(γ)(r
γ
j yqv

µ) if (u, t) = (λ, j),
0 otherwise.

Thus we obtain that for any (u, t) ∈ Λ× I,

[(x)iλ ηut(y)jµ]φ = (x)iλφρut(y)jµφ.

By Definition 3.6, we know that φ = (φ1, φ2) is a (Γ1,Γ2)-isomorphism from
Γ2-semigroup Tµ to Γ1-semigroup S, that is, we have:

Theorem 3.7. Let S be an abundant semigroup with zero, then S is Γ- isomor-
phic to a Γ-Rees matrix semigroup Tµ = µ(T ; I, Λ, ρ) where T =

⋃{Mαβ | α, β

∈ Γ
′} is a Γ-semigroup and ρ is a Γ-Rees matrix over Γ1, that is, any abundant

semigroup S has a Γ-Rees matrix representation.

Furthermore, we can prove the following result.

Theorem 3.8. Let S be an abundant semigroup with zero, if S0 is an ade-
quate transversal of S, then S is Γ-isomorphic to a Γ-Rees matrix semigroup
Tµ = µ(T ; I, Λ, P ) with a Γ-adequate transversal T 0

µ Γ-isomorphic to S0. Fur-
ther, T 0

µ is Γ-multiplicative if and only if S0 is Γ-multiplicative. That is, any
abundant semigroup S with an adequate transversal S0 has a Γ-Rees matrix
representation Tµ such that Tµ has a Γ̄-adequate transversal T 0

µ Γ-isomorphic
to S0.

Proof. By Theorem 3.7, we know that there is a Γ2-Rees matrix semigroup Tµ

such that Tµ is Γ-isomorphic to S by φ. Let T 0 = {t0 ∈ T | ∀x0 ∈ S0 ∃| t0 ∈
T, rα

ī
, qβ

λ̄
∈ S,3 x0 = rα

ī
t0qβ

λ̄
}. Similar to the proof of Theorem 3.5, T 0 is a

Γ̄1-subsemigroup of T , under the multiplication (3.4) for some subset

(3.7) Γ̄1 =
{

ρīλ̄ =
{

ρīλ̄ ī = λ̄
0 ī 6= λ̄

∀ī ∈ Ī ∃|a ∈ T, aρī̄ia = a, Ī = Λ̄
}

.

Further, we put the subset of Tµ as follows

T 0
µ = {(t0

īλ̄
) | t0 ∈ T 0, (̄i, λ̄) ∈ Ī× Ī}.

Since φ = (φ1, φ2) given by (3.6) is a Γ-isomorphism from Γ2-semigroup Tµ to
Γ1-semigroup S, consider φ|

T0
µ

as belows for any (t0)īλ̄ ∈ T 0
µ

(t0)īλ̄φ1 = rα
ī
ρλ̄(α),̄i(α)t

0ρλ̄(β),̄i(β)q
β

λ̄
(= rα

ī
t0qβ

λ̄
) ∈ S0,

ηλ̄īφ2 = ρλ̄ī.
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Thus φ|
T0

µ
is a Γ-isomorphism from Γ̄2 = {ηλ̄ī ∈ Γ2 | (̄i, λ̄) ∈ Ī× Ī}-semigroup

T 0
µ to Γ̄1-semigroup S0. Now for any (t)iλ ∈ Tµ where t ∈ T, (i, λ) ∈ I ×Λ, let

t = ett
0ft by S0 is an adequate transversal of S. Then

(t)iλφ = rα
i ρλ(α)i(α)tρλ(β)i(β)q

β
λ

= rα
i tqβ

λ

= rα
i ett

0ftq
β
λ

= rα
i etqīrīt

0qīrīftq
β
λ (∵ qīrī is the identity of Tᾱ)

= (rα
i etqī)ρī̄i(rīt

0qī)ρī̄i(rifeq
β
λ)

= (et)īiφρī̄i(t
0)ī̄iφρī̄i(ft)īλφ (by (3.4))

= [(et)īiηī̄i(t
0)ī̄iηī̄i(ft)īλ]φ (by Γ isomorphism φ)

for some (̄i, ī) ∈ Ī× Ī. So we have that

(t)iλ = (et)īiηī̄i(t0)ī̄iηī̄i(ft)īλ,

where (t0)ī̄i ∈ T 0
µ and (et)īiL

∗
Γī

(t0)ī̄iR
∗
Γī

(ft)̄iλ by Lemma 1.3. Thus by Defini-
tion 2.1 and Definition 3.6 we know that T 0

µ is an Γ̄adequate transversal of Tµ

and T 0
µ is Γ-isomorphic to S0. The remanent proofs are omitted. We complete

the proof of this theorem. ¤
Finally, we use an example to conclude this note, at the same time to illus-

trate the application of Theorem 3.8.

Example 3.9. Let M be a regular idempotent generated semigroup with zero
and having a multiplicative semilattice transversal M0 = {a, e}. M is not
orthodox with Caley table as below.

M a b c d e
a a b a b e
b a b e e e
c c d c d e
d c d e e e
e e e e e e

L1 = {a, c}, L2 = {b, d}
R1 = {a, b}, R2 = {c, d}
H11 = {a}, H12 = {b}
H21 = {c}, H22 = {d} (H2

22 = {e}).

Under structure express (M, I, Λ, ) of M , computing we let the mappings

ρλ : H11 → H1λ, xρλ = xqλ, where qλ =
{

a λ = 1
b λ = 2

ρi : H1λ → Hiλ, ρiy = riy, where rλ =
{

a i = 1
c i = 2.

Further, let ρλi = ρλρi for (i, λ) ∈ I ×Λ and the Γ1-Rees matrix ρ = (ρλi)Λ×I ,
where Γ1 = {ρλi | (i, λ) ∈ I × Λ}. Let Γ2 = {ηλi | (i, λ) ∈ I × Λ} where ηλi as
required in (3.5). Then M becomes a Γ1-semigroup under the multiplication
(3.4), Mµ = µ(H11, I, Λ, ρ) becomes a Γ2-semigroup under the multiplication
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(3.5). By Theorem 3.8, M is Γ-isomorphic to the Γ2-Rees matrix semigroup
Mµ over Γ1.

Nextly. Let N
⋃{0} be cancellative monoid of natural number with an outer

zero under multiplication. Using the above set I×Λ take the matrix θ = (1)Λ×I .
It is easy to show that the Rees semigroup K = µ(N, I, Λ, θ) is an abundant
semigroup with a multiplicative transversal K0 = {(n)11 | ∀n ∈ N

⋃{0}}. We
denote the element of K by xiλ for (i, λ) ∈ I × Λ. Computing we have that
E(K) = {111, 112, 121, 122}

⋃{0} and the mappings

ρ
′
λ : H∗

11 → H∗
1λ, x11ρ

′
λ = x1111λ = x1λ, where q

′
λ =

{
111 λ = 1
112 λ = 2 ;

ρ
′
i : H∗

1λ → H∗
iλ, ρ

′
iy1λ = 1i1y1λ = yiλ, where r

′
λ =

{
111 i = 1
121 i = 2.

Let ρ
′
λi = ρ

′
λρ

′
i for (i, λ) ∈ I × Λ and the Γ

′
1-Rees matrix ρ

′
= (ρ

′
λi)Λ×I , where

Γ
′
1 = {ρ′λi | (i, λ) ∈ I × Λ}. Let Γ

′
2 = {η′λi | (i, λ) ∈ I × Λ}, where η

′
λi as

required in (3.5). Then K becomes a Γ
′
1-semigroup under the multiplication

(3.4), Kµ = µ(H∗
11, I,Λ, ρ

′
) becomes a Γ

′
2-semigroup under the multiplication

(3.5). Similar to M , by Theorem 3.8, K is Γ-isomorphic to the Γ
′
2-Rees matrix

semigroup Kµ over Γ
′
1.

Let S = M × K, S0 = M0 × K0 be two direct product sets. Let Γ∗1 =
(Γ1, Γ

′
1) = {(ρλi, ρ

′
λi) | (i, λ) ∈ I × Λ} and Γ∗2 = (Γ2,Γ

′
2) = {(ηλi, η

′
λi) | (i, λ) ∈

I × Λ}. Under the multiplications of (3.4) and (3.5), we define the following
multiplications of S and Mµ ×Kµ.

( ∀ (x, niλ), (y,mjµ) ∈ S) (x, niλ) ◦ (y, mjµ) = (x, niλ)(ρut, ρ
′
ut)(y, mjµ)

= (xρuty, niλρ
′
utmjµ);

( ∀ ((x)iλ, (nut)iλ), ((y)jµ, (mvk)jµ) ∈ Mµ ×Kµ

((x)iλ, (nut)iλ) ◦ ((y)jµ, (mvk)jµ) = ((x)iλ, (nut)iλ)(η, η
′
)((y)jµ, (mvk)jµ)

= ((x)iλη(y)jµ), (nut)iλη
′
(mvk)jµ),

where (η, η
′
) denote some (ηλi, η

′
λi) for (i, λ) ∈ I×Λ. Thus S = M×K becomes

a Γ∗1-semigroup and Mµ×Kµ becomes a Γ∗2-semigroup. Further, using ρλi, ρ
′
λi

we define the following bijection φ = (φ1, φ2)
φ1 : Mµ ×Kµ → S, ((x)iλ, (nut)iλ) 7→ (riρλixρλiqλ, r

′
iρ
′
λinutρ

′
λiq

′
λ),

φ2 : Γ∗2 → Γ∗1, (ηλi, η
′
λi) 7→ (ρλi, ρ

′
λi).

It is easy to check that φ is a Γ-isomorphism from Γ∗2-semigroup Mµ×Kµ to Γ∗1-
semigroup S. By Theorem 3.8 we know that Mµ ×Kµ has a Γ∗2-multiplicative
adequate transversal M0

µ×K0
µ where M0

µ (K0
µ) is the Γ2-(Γ

′
2-) multiplicative ad-

equate transversal of Mµ (Kµ) and M0
µ×K0

µ is Γ-isomorphic to S0. Computing
we know that M0

µ and K0
µ may be described by

M0
µ = { (a)11, (e)}, K0

µ = { (n11)11 | n11 ∈ K0}.
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Note that under the multiplication (1.1) and the multiplication of direct prod-
uct S is indeed an abundant semigroup with a multiplicative adequate transver-
sal S0. Therefore concluding above results we may say that the abundant semi-
group S has a Γ-Rees matrix representation Mµ ×Kµ with a Γ-multiplicative
Γ̄-adequate transversal M0

µ ×K0
µ Γ-isomorphic to S0.
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