913 A8 Y

An Adaptive Buffer Tuning Mechanism for striped transport layer
connection on multi-homed mobile host
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Abstract

Recent advancements in wireless networks have enabled support for mobile applications fo fransfer data over heterogeneous
wireless paths in parallel using data striping technique (2). Traditionally, high performance data transfer requires tuning of multiple
TCP sockets, af sender’s end, based on bandwidth delay product (BDP). Moreover, traditional techniques like Automatic TCP
Buffer Tuning (ATBT), which balance memory and fulfill network demand, is designed for wired infrastructure assuming single flow
on a single socket. Hence, in this paper we propose a buffer tuning fechnique at senders end designed to ensure high
performance data fransfer by striping data at fransport layer across heterogeneous wireless paths. Our mechanism has the
capability to become a resource management system for fransport layer connections running on multi-homed mobile host
supporting features for wireless link i.e. mobility, bandwidth fluctuations, link level losses. We show that our proposed mechanism
performs better than ATBT, in efficiently utilizing memory and achieving aggregate throughput.

= keyword : socket buffer tuning, resource management, TCP, flow confrol, data stripping 22 M 54, A&, TCP, &
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1. Introduction technologies exhibit unique and diverse network

characteristics of coverage range and data rate. Thus,

Efforts to provide services to the astronomical today there are various options available for access

mobile users led to the explosion of huge number of to a mobile user to choose from, ranging from

Wireless access technologie& Each of these Globstar for satellite access, General Packet Radlo

Service (GPRS), Wideband Code Division Multiple

v 28 9. Asge AEE T Access (WCDMA), Enhanced Data Rate for GSM
- . 7% =1 o 1

faraz@khuw.ac.kr Evolution (EDGE) for wide area access and IEEE

wx SR Sl ArE et 802.11 or HyperLAN for local area network access.
johnhuh@khu.ac.kr(Corresponding author)
[2008/10/07 F-37 - 2008/10/10 AA} - 2008/12/21 AAFHE]

Moreover, with the emergence of such diverse access
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technologies an effort is made by network research
community to utilize their coexistence to provide the
best of the services to the mobile user.

The first ever proposal of a technology that
realizes, the utilization of different access networks,
is that of vertical handoff [1] providing ubiquity of
service by handing off to a different network. It
requires the usage of a single wireless interface by
the application at a time. Lately, simultaneous usage
of diverse multiple wireless interfaces to achieve
high performance by aggregating bandwidth along
different paths, is considered, as in [2]. In such
scenarios, where high performance is required along
diverse paths, a seemingly better solution of
application layer stripping along different TCP
sockets sharing same path, performs abjectly as
[2].

community has come up with proposals to strip data

shown in Hence, the network research
at transport layer which lead to the stream of
protocols such as parallel TCP (pTCP) [2], multiple
TCP (mTCP) [3], Dynamic Multipath TCP
(DMTCP) [4], Aggregate Bandwith Multihoming
Support (AMS) [5], which are shown to perform
well in case of diverse wireless path scenario. In all
such protocols, the congestion control algorithm runs
independently along multiple active paths in order to
strip data according to the present network condition
estimated by congestion window. It is important to
note that the features of these protocols are inherited
from TCP. In other words, these protocols are
advance form of TCP, supporting striping.

The potential applications of the above mentioned
protocols are distributed computing applications
requiring high volume data transfer over high speed
wireless connections such as 3G High Speed Uplink
Access (HSUPA) or High Speed Downlink Access
(HSDPA). For instance Mobile Data Grid, enabling

heterogeneous grid resource, datawarehouse, access

for huge amount of data over wireless, is a specific
example of such distributed computing application.
As TCP performs poorly across high capacity wide
area network and requires proper tuning, proposals
such as [6, 7] can be found whose ultimate target is
to enable high performance data transfer. Moreover,
in order to prevent tedious system tuning by the
application developer, Work Around Daemon (WAD)
[8] has been proposed which monitors network state
and automatically configures buffer size for TCP
connections at the host. All of such works are
inspired by TCP performance degradation on high
capacity wired infrastructure. And, the techniques
tune the

congestion window as the estimate for the data in

employed to connections  considers
flight. However, in case of wireless connection

congestion window is not a correct estimate,
especially if the link is severely prone to errors. This
is due to TCP’s in ability to distinguish congestion
losses from link level losses [9]. And, future
generation mobile handset will encounter handoff both
horizontal and vertical which requires notification
from layers in order to enhance the
performance of TCP. Also, as the mobile handsets are

devices whose resources are to be utilized efficiently,

lower

therefore, such needs call for a resource management
system which manages the TCP connections at the
host efficiently utilizing the memory, as well as, by
monitoring wireless link state.

ATBT [10] is the technique that balances memory
usage, at the same time, meeting network target for
multiple single flow TCP connections. With the
advent of major TCP connection striped along
diverse paths, a single socket will be logically shared
by the micro flows. Hence, ATBT which assumes a
single flow on a socket will perform poorly.
Partially, the poor performance will be contributed
due to in correct estimate of network target through
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congestion window. Also, often at the host there are
various small connections not utilizing the assigned
buffer to the fullest. Hence, large connections such
as striped connections requiring extra buffer for
achieving high throughput can appropriate their space
by applying greedy approach. On the contrary,
during connection life time when the striped
connection does not require extra buffer, it can
allocate extra space to the other connections, running
at the host, in proportion to their bandwidth.
Therefore, in this paper we propose a dynamic
buffer
communication for monitoring network state applicable

tuning  technique using cross layer

to striped TCP connection along diverse wireless paths.

The contribution of this work is two fold

e We propose a technique for tuning the buffer
size of the connection by applying a controller
often used in control theory to regulate the
sizing process

We set the network demand for the controller
to tune the buffer; by using link layer
information regarding dynamic changes in
bandwidth and by monitoring the buffer
occupancy of all the connections running at
multihomed mobile host

The rest of the paper is organized follows: Section
2 discusses related work in the direction of buffer
tuning. Section 3 presents proposed system and
discusses the details of tuning technique. Section 4
presents the simulation results. Section 5 concludes
the paper with the discussion of future directions.

2. Related Work

2.1 Buffer Tuning Techniques

The advent of buffer tuning techniques arose with

the need of improving the performance of the

network applications on a high performance
networks. Often the degradation of performance is
experienced by the distributed code due to inability
of TCP to open up its congestion window over
WAN. In order to solve the problem, research
community has come up with various buffer tuning
techniques to avoid performance degradation [8]. In
which the basic idea of tuning is to fill the BDP of
the network path, the most important performance
parameter in case of bulk data transfer.

The tuning mechanism in literature is classified as
manual and automatic tuning mechanism. While,
manual tuning is a tedious work leaving it to be a
non-optimal solution.

ATBT in [10] is purely a sender based

approach where the sender uses TCP packet header

information and timestamp to estimate the bandwidth
delay product of the network which is used to resize
the buffer, consequently leading to large sender
window.

In contrast to ATBT, Dynamic Right Sizing
(DRS) [11] is a receiver based approach, but like
ATBT, it estimates the bandwidth delay product and
the congestion control state of the sender using TCP
packet header information and timestamps. It then
advertises the window large enough that the sender
is not flow window limited.

Linux auto-tuning is basically a memory
management technique in stable Linux version 2.4.
The buffer size is increased and decreased on the
basis of available system memory and available
buffer

mechanisms, bandwidth delay product

socket space. Unlike above mentioned

is not
estimated in this technique.

There are other techniques which performs the
same task as manual tuning by running a daemon

[8]. It gathers the network information of the hosts

Ell

A

ron

= olEf HESIE] (10243)

201



HE|E THIY SAEMOAM AERO]

T HeHE olzg

among which the connections are to be tuned and
saves it in a database. Host then lookup this
information while opening the connection.

All, of the above mentioned schemes are
conventional buffer sizing mechanism. They consider
the scenario where we have a multiple single flow
TCP connections running in a system and only high
capacity wired network features are monitored. We
will discuss, working of ATBT scheme as, it is
closest to our work of efficiently utilizing memory
with network target, with the detail critical analysis,
in the following subsection

2.2. Automatic TCP Buffer Tuning
Algorithm

As mentioned before that ATBT algorithm is a
sender based approach which regulates the send
buffer dynamics. The buffer size at any point in time
is configured on the basis of three algorithms which
are as follows

o First algorithm determines the target buffer

size on the basis of network target

® Second algorithm attempts to balance memory

usage

e Third algorithm calculates the fair share of

memory for a single connection which acts as
a hard limit preventing excess memory usage

It is necessary to discuss the variables used by the
algorithm to calculate the optimal buffer size.

AUTO_SND_THRESH A constant which actually
sets the memory threshold set by the system.

sb_net_target A variable that sets the target buffer
size according to cwnd as it consider it to be true
estimate of bandwidth delay product.

hiwat_fair_share A variable that holds the fair
share of the memory calculated using max-min fair
share algorithm for a single TCP connection.

sb_mem_target A variable that suggests a send

socket buffer size by taking the minimum of
sb_net_target and hiwat_fair_share.

The working of ATBT algorithm is shown in
figure 1, where as the memory balancing algorithm
is shown in figure 2.

1: Initialize sh_net_target = 2 * cwnd
2: Initialize Aiwat_fair_share = calculateFairShare()
3. sh_mem_target = min(sh_net_target, hiwat_fair_share)

(Figure 1) ATBT Algorithm

The memory balancing algorithm runs twice in a
second. At the same time, fairness is achieved by
employing max-min fair share algorithm. In the
second iteration the left over memory is divided
equally among the large connections which require
more memory.

1: Initialize sum = 0; suml = 0

2 for each connection I

3: if (sb_net_target, < hiwat _ fair _share,)
4

sum++ ; M =M + sb_net_target,

5 else

6: suml++

7 end if

8 end for

9: if M > AUTO _SND _THRESH

10: for each connection i

11: If (sb_net_target, ¢ hiwat_ fair _share,)
o AUTO_SND_THRESH

12: hivat_fir_share, = =" 2

13: end if

14: end for

15:  else if M <AUTO_SND _THRESH
16: for each connection i

17: If (sb_net_target, > hiwat_ fair _share,)

18 . Hivat_fair_share = AUTO_SND_THRESH - M
N - ‘ suml

19: end if

20 end for

21t End if

(Figure 2) Memory Balancing Algorithm

One of the obvious problems is that it is very rare
that the large connections will have the same
demand for memory. Thus, throughput of a
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connection requiring more memory might be
hindered as the excess share given to it in the
second iteration might not be sufficient. If, in the
second run, excess memory is assigned proportional
to the BDP demand rather than dividing equally,
large connections perform better than before.

At the same time, in case of wireless networks,
the system might become unstable due to high
frequency of congestion window (cwnd) oscillations
or in correct estimate of bandwidth due to its
dependency on probing interval to set sb_net_target.
Moreover, in correct estimation might also result due
to shrinkage of cwnd occurring because of link level
losses, common in wireless environment, as
mentioned in the introduction. Hence, we say that
cwnd might not be an efficient estimate of BDP for
a TCP connection running on wireless.

3. Proposed System

The basic assumption in our system is, existence
of bottleneck at the gateway connecting the wired
infrastructure and the wireless link. As a result, the
performance of the TCP connections is dependent,
on the dynamics of bandwidth available at the
gateway. Our design, considers the constraint
imposed by the system on memory usage, by
defining a threshold under which all TCP
connections can operate. Likewise, same kind of
threshold on memory is used in [10] in order to
avoid the exhaustion of mbuf clusters in the system.
In figure 3, we show the flow of our system. The
functionality of our design rests on the availability of
memory space from the connections not utilizing
assigned space to its maximum. And, regulation of
buffer in our system is carried out by PID controller
which suggests corrective output, which is analyzed
with the available memory space, accordingly

applied to the buffer. The feedback for the controller
is the assigned buffer size. In simple words, the
controller is managing the buffer size according to
the dynamics of the available space in the system. In
this section, we will define and describe the basic
elements of our system.

System Memory

Cross layer information inciuding
(Radio Netwark Feedback 36,

Memary usage th’shuldl
MAC Layer bnausath monsonng

Setreference
point

[
along Different striped pipes

il TCP Stripped Pige

Resource Manager

Corrective

output Buffer Lsage| Bianchnicth
dynamics demands

PID cotroller T Monitaring Agent TCP Pipe
LL TCP Pipe

Feedkack of buffer allocation & furction
of corrective oufout over siriped
conrection

(Figure 3) Flow of dynamic buffer size allocation
for striped connection

3.1. Monitoring Agent

The monitoring agent is responsible for
multiple  TCP
maintaining variables related to them. The variables

monitoring connections  and

are updated after certain interval of time. For each
TCP connection following variables are monitored.

AvgBuffOccup A variable maintained for a single
connection by the agent is
calculated using EWMA (Exponential
Weighted Moving Average) of
BuffOccup variable. The goal is to
estimate the buffer occupancy
during the lifetime of the TCP
connection.

BuffOccup A monitoring variable that contains the
current value of buffer occupancy of a

single TCP connection.

Dev A variable maintained to calculate the
current deviation of BuffOccup from
AvgBuffOccup

A variable maintained by the agent for
a single connection calculated using
EWMA of Dev. The concept behind

AvgDev
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maintaining such variable is to estimate

the maximum deviation from the

AvgBuffOccup by giving weight to the

latest observation of Dev.
AssignedBuff A variable containing the current buffer
Size allocation for a single connection

A variable that is used by the
resource manager, gives the proportion
of connection estimated throughput over
aggregate throughput demand of all the
connections at the host

proportion

On the global level we maintain two variables for
the whole system.

AggSpace A global variable that is maintained to
estimate the overall unused space based on
the estimation of monitoring variables

It is necessary to describe certain conventions that
we have used in the algorithms that will be
described in the subsections of this section. We
represent current time with the variable t. Then the
value of any variable Var, for a connection

represented by i at time t, is then represented as

Var,

it .

Figure 4 shows the algorithm running in the
monitoring agent. The bandwidth changes are
gathered using cross layer communication i.e. Radio
Network Feedback in case of 3G as used in [15] and
in case of IEEE 802.11 WLAN as monitored by
MAC layer, wireless link is assumed to be
bottleneck. These changes will be used to calculate
BDP along a certain path. Thus, our system does

not use cwnd to estimate the network demand. & and

B are smoothing factors for EWMA and weights
for the current observation. In case of our case, in

order to give enough weight to historical

observations the values choosen for & andﬂ is 0.3.

for each connection 1
AvgBuffOccup, = a x BuffOccup, + (1-a)x AvgBuffOccup,,_,

1:

2

32 Dev, = BufferOccup, — AvgBuffOccup ,,

4 AvgDev, = fxDev,+ (1= B)x AvgDev,
AvailableSpace, = AssignedBuffSize, —(AvgBuffOccup, + AvgDev,)
AggSpace, = AggSpace, + AvailableSpace,,

N oA

: AggregateBandwidth,+ = Bandwidth,
8: end for
9:for each connection i
R Bandwidth,
10: proportion, = AggregateBandwidth,
11:end for

(Figure 4) Monitoring Agent Algorithm

3.2. Resource Manager

It is responsible for allocating extra memory space
to adjust the assigned buffer size according to the
current available memory space and the network
memory demands. In brief, it consults the controller,
running PID algorithm to regulate the assigned
buffer for striped connection. Primarily, the PID
(proportional integral derivative) controller is used in
control engineering to control the measurable process
variable in a factory by a constant feedback from the
process. Algorithm running in the controller, then
suggests a corrective output in order to bring the
measurable process variable close to the reference
point, set in the algorithm.

In network engineering realm, PID algorithm is
often seen to be used in AQM (Active Queue
Management) to manage the length of an outbound
queue in a router by selectively dropping the packets
to bias the behavior and performance of connections
transiting the router during times of congestion [13].

During the life time of the connections there can
be two scenarios: high network demand, low
network demand such that the assigned buffer is in
excess. In case of first scenario, first of all the
threshold of the PID algorithm is set to the current
network demand that is to be met. Then the
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available space is obtained from the monitoring
agent. Figure 5 shows the algorithm for resource

allocation.

1: Execute SetThresholdPID(BandwithDemand,)

9. Initialize AvailableSpace = AggSpace,

3. Initialize output = PID _output(AssignedBuffSize,)
4: ;f output — AvailabeSpace < 0

5: AssignedBuffSize,,, = AssignedBuffSize + AvailableSpace
6: elseifoutput — AvailabeSpace 2 0

7. AssignedBuffSize,,, = AssignedBuffSize, + output

8

9

end if

for each connection 1
10: AssignedByfiSize, , =(Threshold_Mem—AssignedBfSize, ., ) proportior,
11: AllocateBuffSize( AssignedBuffSize,.,,)
12: end for

13:  Evecute AllocateBuffSize(AssignedBuffSize,,,)

(Figure b) Resource allocation algorithm case 1

PID algorithm suggests the corrective action that
is necessary to be taken by the system in order to
meet the demand of the network that is set. But, as
the system is constrained by system memory, the
corrective action at each cycle suggested for the
assigned buffer of the striped connection cannot be
as such directly applied. As a result, the output is
compared with the available space at the moment
from the already running connections. The allocation
is suggested to be applied directly if there is enough
available space. The additional memory is allocated
according to the available space at the present cycle.
In the end, the remaining space after the allocation
of memory to the striped connection is proportionally
re-assigned to other remaining connections.

In case of second scenario, at the end of step 4,
the new buffer size will be calculated and assigned,
as a result at stepl0O; extra memory is proportionally
allocated to the remaining TCP connections in
proportion to estimated bandwidth demands from the
network. At the same time, single transport

connections can also estimate BDP (Bandwidth
Delay Product) not necessarily on the basis of cwnd
as in ATBT.
PID algorithm as shown in figure 6 generates
corrective out put on the basis of three parameters
e Correction suggested in proportion to the error
o Aggregated error accumulated over a certain
period of time
e FError difference between the present and the
last error, thus giving the rate of error in
feedback

Each of these parameters are multiplied by tunable
k

constants “p , k; , k; and then added together to
generate the output for the controller. There are
various sophisticated mathematical mechanisms to
tune these constants. This is left as our future work.
For this paper we have selected the constants which
ensure stability of PID in most of the cases which

are 0.05, 0.01, and 0.04 respectively. Threshold is
set as in ATBT ie. 2xBDP. For a striped,

connection bandwidth demand is aggregated over all

the micro flows.

1: procedureSetThresholdPID(BandwithDemand,)

2t Threshold = 2* BandwidthDemand * RTT
3. end procedure

4 procedure PID _output(AssignedBuffSize,)

5: Error, = Threshold _ PID — AssignedBuffSize,
6: output = k, x Error, + k,x 3. Error, + k, x (Error, - Error, )
7 return output

8:end procedure

(Figure 6) PID algorithm

4. Experiment

The first subsection presents the network topology
used for the simulation. In the second subsection, the
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simulation scenarios are discussed along with their
results.

4.1. Network Topology

In this section, we present the topology used for
our simulation. A mobile host (MH) uses transport
layer striped connection, collectively, to transfer a
file of size 10MB to a fixed host (FH) using FTP
application. The data is striped along 3 wireless links

(@) MH - RO, with data rate of 11Mbps and

propagation delay of 10ms in case of WLAN,
where RO is the access point or router for the
link

(b) MH - RIl, with data rate of 2Mbps and

propagation delay of 120ms in case of GEO
satellite network, where R1 is the access point
or router for the link

(¢) MH R2, with data rate of 7Mbps and

propagation delay of 70ms in case of 3G
HSUPA (high speed uplink access), where R2
is the access point or router for the link

In figure 7, flows f1f3 are the micro flows of
a major TCP connection supporting transport layer
stripping. As our mechanism is independent of the
transport protocol used, for our simulation we ran

TCP-SACK at micro flow level. Besides micro

flows, there are other TCP ﬂows,f4“'f8, running
on a mobile host which will vary according to the
simulation scenarios discussed later. To simulate the
background internet traffic, we ran 2 TCP flows and
2 UDP flows,f9

nl..n4 with the ultimate destinations #5...n8

-+ f12, originating from sources

respectively. The access routers are connected with

the background internet routers Ry, R\ Rs it
100Mbps data rate and 30ms propagation delay links
connecting these routers. Ultimately, the backbone

routers are connected to the gateway Rs which is
connected to FH with a link of 100Mbps data rate
and 10ms propagation delay. Also, destination nodes

for background internet flows are connected with

R6.

A

o 100Mbp
10 0Mbg s -

1om 1

o ips
Tom »

) -

‘ 10amDps

R1

20m 5

| s

AT
30m s

[ILITHERN
tom 5

L W0OMBps

\ A

(Figure 7) Simulation topology

f;,

The entire simulation is carried out in ns-2 [14].
We have
monitoring the connections and maintaining global
per
connection variables. Besides the monitoring module,

implemented our own module for

variables for entire system, as well as,
a memory allocation agent is implemented which
communicates with TCP, FTP application and
assigns buffer size according to our proposed
mechanism.

4.2. Simulation Results

We consider two scenarios for our experiment.
For the first scenario, the performance is analyzed by
ensuring more than enough available memory for the
connections on the host by setting high memory
threshold. In contrast, for the second scenario, we
scrutinize performance when a host is constrained on
available memory, by setting low memory threshold
for the connections. For each scenario, we varied the
single flow connections to eight on a mobile host, in

order to prove the scalability of our proposed
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mechanism.
The duration of simulation is 400 seconds. And,

ATBT is expected, due to estimation of BDP on the

basis of congestion window and its unnecessary cut

the single flows start after 10 seconds from the
beginning of simulation. The configuration for the

simulation of two scenarios is summarized in Table
1.

(Table 1) system configuration

Memory | File Size | Default | Maximum
Threshold | (Mbytes) | Socket Payload
(Mbytes) Buffer Size| per Packet
(Kbytes) (Bytes)
High 100 10 128 1460
Memory
Scenario
Low 2 10 128 1460
Memory
Scenario

The performance is analyzed by observing the
aggregate throughput of the striped connections both,
at sender and receiver end, after every 10 seconds.
We varied the bandwidth after 50 seconds, in order
to simulate bandwidth fluctuations. At the same
time, the buffer is monitored after 20 seconds. The

results are discussed in the following subsections.

4.2.1 High Memory Scenario

Figure 8 and 9, respectively, shows the results at
sender and receiver end for 3 micro flows
constituting major stripped connection and 1 single
flow, for an aggregate of 4 connections in the
system. It is blatant, that our proposed mechanism
simply out class ATBT mechanism in terms of
enabling connections to open up their window to
achieve maximum throughput. This trend is
observable at both ends. The sender appropriated
space from the 4th connection and maximized its
sending throughput by transferring more data at a
time. The bad performance of the connection under

down due to link level losses.

N
N

—e— ATBT

—=— Proposed
Mechanism

E
H
k;

Aggregate Throughput (Mbps)
o
|

,\'\ ,b'\ ,\'\ \\ \9)\ \%\ [{};\ «’ﬂ\ n_;\\ nga'\ n_)q’\

Simulation time (seconds)

(Figure 8) Receiver side throughput for four
connections

w
S

——ATBT

[

—=— Proposed
Mechanism|

NN
=3

o o

Aggregate Throughput (Mbps)

o o

N OO N DO~ O MO D
T T N ANN®O®®

Simulation time (seconds)

(Figure 9) Sender side throughput for four
connections

Likewise, the same behavior is observed even if
the number of single flow connections is increased
to an aggregate of 8 connections running at the host.
Figure 10 and 11 shows the sender and receiver
perceived aggregate throughput. The throughput
achieved is lowered slightly which is due to high
number of connections sharing common pool of
memory. In addition, increased congestion in the
network also contributed to lower aggregate
throughput at the receiver.

Figure 12 shows the buffer size of the striped
connection socket. The size of the buffer allocation
remains higher than the allocation by ATBT. At the
same time, memory constraint imposed by the

system is preserved. The buffer allocations in case of
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first scenario, for both ATBT and proposed
mechanism, are also higher than the second scenario.
This is due to low number of connections sharing
common pool of memory, in case of first scenario.
As a result higher amount of data is sent in flight
and congestion window opens up fully leading to

high throughput in case of proposed mechanism.

—

w
S

——ATBT

)
(3}

—m— Proposed
Mechanism

- o
L

Aggregate Throughput (Mbps)

o

1151 91 131 171 211 251 291 331 3N

Simulation time (seconds)

(Figure 10) Receiver side throughput for eight
connections
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1]
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Aggregate Throughput (Mbps)
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N 9o q:\,ﬁ')

Simulation time (seconds)
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(Figure 11) Sender side throughput for eight
120000
“»100000

connections
80000

AT

——ATBT

—=— Proposed
Mechanism

40000 -
20000
0

Buffer Size (bytes

IS rﬂ\ r{Q\ “)Q\ ﬁy\ n};\
Simulation time (seconds)

(Figure 12) Buffer size sender side for eight
connections

4.2.2 Low Memory Scenario

In case of second scenario, for 4 aggregate
number of connections running at the host. A large
gap in achieved aggregate throughput, between the
proposed and ATBT mechanism at the sender’s end
is seen. Figure 13 and 14 shows receiver and sender
side aggregate throughput. Clearly, because of low
memory the connections were unable to send large
While,
performed  well

enough data. our proposed mechanism

aggregate
throughput at both end. It can be seen that at sender

in achieving high

end, throughput remained nearly constant in case of
ATBT while our mechanism showed great variation
during the whole simulation time. This behavior is
expected, as our mechanism, estimates available
space from other connections. Thus, in this case we
have only one single connection running at the host.
As a result, aggregate throughput of the stripped
connection is a function of the available space from

1 single connection in this case.

—e— ATBT

—=— Proposed
Mechanism

Aggregate Throughput (Mbps)

Simulation time (seconds)

(Figure 13) Receiver side throughput for four
connections

—e—ATBT

—=— Proposed
Mechanism

PSS
SNRESRE
Simulation time (seconds)

(Figure 14) Sender side throughput for four
connections
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In case of increasing the connections to 8 at the
host, the same trend is observed, but lower than the
first case. It is evident, in this case at the sender
end; the stripped connection throughput is a function
of the average available space across 5 single flow
connections. In the beginning the throughput was
high, as the time passes when the other 5 single
flows begins sending data over the network, in that
case the buffer allocations for the connections are
reduced and contributes to nearly constant observed
aggregate throughput. At the same time, at the
receiver end ironically in the beginning a surge is
in achieving aggregate throughput. The
aggregate achieved by and
receiver is of the order of Kbytes, as our graph is
drawn in the scale of Mbytes due to which the line

seen

throughput sender

nearly touches the x-axis. In the end again, due to
congestion augmented with lower amount of data
the the
aggregate throughput.

send by sender, dramatically lowers

Figure 15 and 16 shows the buffer allocation of
the striped connection socket which is higher than
ATBT is case of low memory scenario. While, the
behavior observed in this case is similar to high
memory scenario i.e. in case of 4 connections the
allocation is higher than 8 connections regardless
whether ATBT or proposed mechanism is applied.
And, our proposed mechanism allocates higher buffer
size than ATBT.

—e— ATBT

—#— Proposed
Mechanism

Aggregate Throughput (Mbps)

q'\

q:\'\

Simulation time (seconds)

(Figure 15) Receiver side throughput for eight
connections

,\\ %\ ’3)'\ (\\ q?;\ /]9\ %,b\ 'g\'\

S|
30000
@ 25000

gzoooo"\/v\/“‘/\*“

N 15000 -

10000 4

——ATBT

—=— Proposed
Mechanism

5000
0

Buffer S

ENE SRR ({L\ {@\ “)Q\ “J‘;\ “gb\
Simulation time (seconds)

(Figure 16) Buffer size sender side for eight
connections

5. Conclusion

In this paper we propose a dynamic buffer tuning
technique by applying PID controller, appropriating
unused space from other connections and using cross
layer ~communication for available
bandwidth information. The technique is devised for

striped transport layer connection in which a single

acquiring

socket buffer is shared by micro flows running on
diverse wireless paths. In the end, we show that our
proposed mechanism performs better than ATBT for
achieving high aggregate bandwidth both at sender
and receiver end.
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