DOI QR코드

DOI QR Code

Current-Voltage Characterization of Silicon Quantum Dot Solar Cells

  • Kim, Dong-Ho (Functional Coatings Research Group, Korea Institute of Materials Science(KIMS))
  • Published : 2009.08.31

Abstract

The electrical and photovoltaic properties of single junction silicon quantum dot solar cells are investigated. A prototype solar cell with an effective area of 4.7 $mm^2$ showed an open circuit voltage of 394 mV and short circuit current density of 0.062 $mA/cm^2$. A diode model with series and shunt resistances has been applied to characterize the dark current-voltage data. The photocurrent of the quantum-dot solar cell was found to be strongly dependent on the applied voltage bias, which can be understood by consideration of the conduction mechanism of the activated carriers in the quantum dot imbedded material.

Keywords

References

  1. J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, Appl. Phys. Lett. 91, 023502 (2007). https://doi.org/10.1063/1.2753729
  2. M. A. Green, Third Generation Photovoltaics, (Springer, Berlin, 2003), p. 104
  3. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, Appl. Phys. Lett. 80, 661 (2002). https://doi.org/10.1063/1.1433906
  4. G. Conibeer, M. Green, E.-C. Cho, D. Konig, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, Thin Solid Films 516, 6748 (2008). https://doi.org/10.1016/j.tsf.2007.12.096
  5. T.-W. Kim, C.-H. Cho, B.-H. Kim, and S.-J. Park, Appl. Phys. Lett 88, 123102(2006). https://doi.org/10.1063/1.2187434
  6. X. J. Hao, E. C. Cho, C. Flynn, Y. S. Shen, S. C. Park, G. Conibeer, and M. A. Green, Sol. Energy Mater. Sol. Cells 93, 273 (2009). https://doi.org/10.1016/j.solmat.2008.10.017
  7. E.-C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S.-C. Park, and M. A. Green, Nanotechnology 19, 245201 (2008). https://doi.org/10.1088/0957-4484/19/24/245201
  8. R. Rolver, B. Berghoff, D. L. Batzner, B. Spangenberg, and H. Kurz, Appl. Phys. Lett. 92, 212108 (2008). https://doi.org/10.1063/1.2936308
  9. S. H. Steven, Prog. Photovolt: Res. Appl. 5, 151 (1997). https://doi.org/10.1002/(SICI)1099-159X(199705/06)5:3<151::AID-PIP167>3.0.CO;2-W
  10. O. Jani and C. Honsberg, Sol. Energy Mater. Sol. Cells 90, 3464 (2006). https://doi.org/10.1016/j.solmat.2006.01.004
  11. T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Akcay, and N. Oncan, Appl. Phys. Lett. 94, 042108 (2009). https://doi.org/10.1063/1.3076126

Cited by

  1. Effect of ALD-Al2O3 Passivated Silicon Quantum Dot Superlattices on p/i/n+ Solar Cells vol.64, pp.7, 2017, https://doi.org/10.1109/TED.2017.2704294
  2. Investigation of Temperature Dependent Current-Voltage Characteristics of all-Si Quantum Dot Solar Cell vol.4, pp.14, 2017, https://doi.org/10.1016/j.matpr.2017.10.060
  3. Impact of silicon quantum dot super lattice and quantum well structure as intermediate layer on p-i-n silicon solar cells vol.24, pp.6, 2016, https://doi.org/10.1002/pip.2726
  4. Effect of passivation layer grown by atomic layer deposition and sputtering processes on Si quantum dot superlattice to generate high photocurrent for high-efficiency solar cells vol.55, pp.3, 2016, https://doi.org/10.7567/JJAP.55.032303