A study on the effect of CspA expression on the productivity of recombinant protein at low temperature

CspA의 발현이 저온에서의 재조합 단백질 생산성에 미치는 영향에 관한 연구

  • Kim, Su-Hyun (Department of Chemical Engineering, Pusan National University) ;
  • Heo, Mi-Ae (Institute of Environmental Technology and Industry, Pusan National University) ;
  • Lee, Sun-Gu (Department of Chemical Engineering, Pusan National University)
  • 김수현 (부산대학교 화학공학과) ;
  • 허미애 (부산대학교 환경기술산업개발연구소) ;
  • 이선구 (부산대학교 화학공학과)
  • Published : 2009.02.28

Abstract

One of the major drawbacks associated with the high-level expression of the recombinant proteins in Escherichia coli is the formation of insoluble inclusion bodies in the cytoplasm. Production of recombinant protein at reduced temperature has proven effective in improving the solubility of a number of structurally and functionally unrelated proteins, but a major limitation of using low temperatures for recombinant protein production in E. coli is the reduced rate of synthesis of the heterologous protein caused by the significant reduction of cell growth rate. Here we investigated the effect of co-expression of CspA, a cold-shock protein known to be RNA chaperone at low temperature, on the productivity of recombinant protein at various temperatures by using green fluorescence protein (GFP) as a model recombinant protein. We could observe that the co-expression of CspA enhanced the productivity of GFP at $15^{\circ}C$ by accelerating the growth of E. coli at the temperature. On the other hand, the CspA coexpression didn't affect the cell growth rate as well as the specific GFP production rate at other tested temperatures, $20^{\circ}C$, $25^{\circ}C$, and $37^{\circ}C$.

본 연구에서는 저온에서의 재조합 단백질 생산성 향상을 위하여 저온에서 RNA 샤페론 활성을 지닌다고 알려진 CspA 단백질의 발현이 서로 다른 온도에서 대장균의 성장 및 GFP의 발현 속도에 어떻게 영향을 미치는지를 살펴보았다. $20^{\circ}C$, $25^{\circ}C$, $37^{\circ}C$에서는 세포 성장 및 GFP의 생산이 CspA의 발현에 영향을 받지 않았으나, $15^{\circ}C$에서는 GFP의 총 생산성이 CspA의 동시 발현에 의해 향상되었으며 이는 세포 성장 속도의 향상에 기인함을 확인하였다. 결론적으로 CspA의 발현은 $15^{\circ}C$에서 세포 당 재조합 단백질 생산량의 증가에는 영향을 미치지 않으나, 즉 재조합 단백질의 번역 효율에는 큰 영향을 미치지 않으나, 대장균 성장 속도에 영향을 미치며, 이를 통해 재조합 단백질의 총 생산량 향상을 유도 할 수 있을 것으로 기대된다.

Keywords

References

  1. Baneyx, F. (1999), Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10, 411-421 https://doi.org/10.1016/S0958-1669(99)00003-8
  2. Baneyx, F. and M. Mujacic (2004), Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22, 1399-1408 https://doi.org/10.1038/nbt1029
  3. Mujacic, M., K. W. Cooper, and F. Baneyx (1999), Cold-inducible cloning vectors for low-temperature protein expressíon in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238, 325-332 https://doi.org/10.1016/S0378-1119(99)00328-5
  4. Vasina, J. A. and F. Baneyx (1997), Expression of aggregation-prone recombinant proteins at low temperatures : a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr. Purif. 9, 211-218 https://doi.org/10.1006/prep.1996.0678
  5. Qing, G., L. C Ma, A. Khorchid, G. V. Swapna, T. K. Mal, M. M. Takayama, B. Xía, S. Phadtare H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye (2004), Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877-882 https://doi.org/10.1038/nbt984
  6. Fang, L., W. Jiang, W. Bae, and M. Inouye (1997), Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol. Microbiol. 23, 355-364 https://doi.org/10.1046/j.1365-2958.1997.2351592.x
  7. Giuliodori, A. M., Brandi, A., Gualerzi, C. O., and C. L. Pon (2004), Preferential translation of cold-shock mRNAs during cold adaptatíon, RNA 10, 265-276 https://doi.org/10.1261/rna.5164904
  8. Bulter, T, S. G., Lee, W. W., Wong, E. Fung, M. R. Connor, and J. C. Liao (2004), Design of artificial cell-cell communícation using gene and metabolic network. Proc. Natl. Acad. Sci. 101, 2299-2304 https://doi.org/10.1073/pnas.0306484101
  9. Femandez, L. A. (2004), Prokaryotíc expression of antibodies and affibodies, Curr. Opin. Biotech. 15, 364-373 https://doi.org/10.1016/j.copbio.2004.06.004
  10. Swartz, J. R. (2001), Advances in E. coli production of therapeutic proteins, Curr. Opin. Biotech. 12, 195-201 https://doi.org/10.1016/S0958-1669(00)00199-3
  11. Cavicchioli R., siddiqui K. S., Andrews D., and K. R. Sowers. (2002), Low-temperature extremophiles and their applications, Curr. Opin. Biotech. 13, 253-261 https://doi.org/10.1016/S0958-1669(02)00317-8