Agrobacterium tumefaciens 변이주에 의한 Coenzyme $Q_{10}$ 생합성시 유기, 무기질소원과 아미노산의 영향

Influence of Organic, Inorganic Nitrogen Sources and Amino Acids on the Biosynthesis of Coenzyme $Q_{10}$ by Agrobacterium tumefaciens Mutant

  • 김정근 (한국산업기술대학교 생명화학공학과) ;
  • 원용배 (한국산업기술대학교 생명화학공학과) ;
  • 이강문 (한국산업기술대학교 생명화학공학과) ;
  • 구윤모 (인하대학교 생물공학과)
  • Kim, Jeong-Keun (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Won, Yong-Bae (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Lee, Kang-Moon (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
  • 발행 : 2009.02.28

초록

Coenzyme $Q_{10}$ 고역가 변이주인 Agrobacterium tumefaciens KPU-11-03의 다양한 유기 질소원에 대한 coenzyme $Q_{10}$ 생산량과 coenzyme $Q_{10}$의 구성비율 등을 비교한 결과, CSP 첨가 시 coenzyme $Q_{10}$ 생산량은 212.7 mg/l, 구성비율은 94%로 다른 유기질소원에 비해 매우 높게 나타났다. 특히 Bacto tryptone, Bacto peptone, soybean meal, casamino acid 등의 유기 질소원 첨가 시에는 극히 낮은 coenzyme $Q_{10}$ 역가를 나타내어 균체내의 coenzyme $Q_{10}$의 축적은 유기 질소원의 종류 즉 아미노산의 종류 및 량과 상관성이 있음을 추정할 수 있었다. 또한 무기질소원에 대하여 실험한 결과, $(NH_4)_2SO_4$ 첨가 시에 coenzyme $Q_{10}$역가가 약 2배 증가하였고 다른 무기질소원에 사용 시에는 오히려 감소하였다. Coenzyme $Q_{10}$ 역가와 관련된 아미노산을 확인하기 위해 유기질소원으로 Bacto tryptone을 첨가한 배지에 9가지의 아미노산을 첨가하여 실혐한 결과, 방향족 아미노산인 tyrosine 첨가 시의 coenzyme $Q_{10}$ 생산량은 99.5 mg/l로 비첨가구보다 약 8.2배 증가하였으나 phenylalanine과 tryptophan등의 다른 방향족 아미노산의 첨가 시에는 coenzyme $Q_{10}$ 생산량이 오히려 감소하는 것으로 나타나 tyrosine의 첨가가 coenzyme $Q_{10}$ 역가에 매우 중요함을 확인하였다.

The effect of inorganic, organic nitrogen sources and amino acids on the coenzyme $Q_{10}$ production and coenzyme $Q_{10}$ component ratio was investigated. Among the nine organic nitrogen sources, CSP showed a remarkable enhancing effect on the production of coenzyme $Q_{10}$. But this enhancement was not observed in medium containing Bacto peptone, tryptone, casamino acid and soybean meal. These differences on the production of coenzyme $Q_{10}$ may be due to differences in kinds and amounts of component amino acids and peptides in the various organic nitrogen sources tested. In the addition of inorganic nitrogens, only $(NH_4)_2SO_4$ increase the coenzyme $Q_{10}$ production by 2.0 times compare to the control group. The addition of L-tyrosine to the medium containing Bacto tryptone, was also determined to be crucial for the coenzyme $Q_{10}$ production. But phenylalanin and tryptophan, other aromatic amino acids, had no stimulatory effect on the coenzyme $Q_{10}$ production. These results show that the production and components ratio of coenzyme $Q_{10}$ was greatly affected by the kinds and the concentration of inorganic, organic nitrogen sources as well as amino acids.

키워드

참고문헌

  1. Stoyanovsky, D. A., A. N. Osipov, P. J. Quinn, and V. E. Kagan (1995), Ubiquinone-dependent recycling of vitamin E radicals by superoxide, Arch. Biochem. Biophys. 323, 345-351
  2. Sarter, B. (2002), Coenzyme QlO and cardiovascular disease : a review, J. Cardiovasc. Nurs. 16, 9-20
  3. Ernster, L. and G. Dallner (1995), Biochemical, physiological and medical aspects of ubiquinone functìon, Biochem. Biophys. Acta. 1271, 195-204 https://doi.org/10.1016/0925-4439(95)00028-3
  4. Lenaz, G. (1998), Quínone specificíty of complex I, Biochem. Biophys. Acta. 1364, 207-221 https://doi.org/10.1016/S0005-2728(98)00028-0
  5. Kawamukai, M. (2002), Biosynthesis, bioproductìon and novel roles of ubiquínone, J. Biosci. Bioeng. 94, 511-517 https://doi.org/10.1016/S1389-1723(02)80188-8
  6. Miksovska, J., M. Schiffer, D. K. Hanson, and P. Sebban (1999), Proton uptake by bacterial reaction centers: The protein complex responds in a similar manner to the reduction of either quinone acceptor, Proc. Natl. Acad. Sci. U.S.A. 96, 14348-14353 https://doi.org/10.1073/pnas.96.25.14348
  7. Nohl, H., L. Gille, and A. V. Kozlov (1999), Critical aspects of the antioxidant function of coenzyme Q in biomembranes, Biofactors 9, 155-161 https://doi.org/10.1002/biof.5520090210
  8. Stocker, R., V. W. Bowry, and B. Frei (1991), Ubiquinol-10 protects human low density lipoprotein more efficient1y against lipid peroxidation than does a-tocopherol, Proc. Natl. Acad. Sci. U.S.A. 88, 1646-1650 https://doi.org/10.1073/pnas.88.5.1646
  9. Jessica, L. B. and J. W. Frost (2001), Microbial synthesis of $\rho$-hydrobenzoic acid from glucose, Biotechnol. Bioeng. 76, 376-390 https://doi.org/10.1002/bit.10160
  10. Herrmann, K. M. (1995), The shikimate pathway as an entry to aromatic secondary metabolism, Plant Physiol. 107, 7-12 https://doi.org/10.1104/pp.107.1.7
  11. Olson, R. (1965), Anabolism of the coenzyme Q family and their biological activities, Federation Proc. 24, 85-92
  12. Szkopinska, A. (2000), Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization, Acta. Biochim. Pol. 47, 469-480
  13. Chaykin, S., J. Law, A. H. Philips, T. T. Tchen, and K Bloch (1958), Phosphorylated intennediates in the synthesis of squalene, Proc. Natl. Acad. Sci. U.S.A. 44, 998-1004 https://doi.org/10.1073/pnas.44.10.998
  14. Rohmer, M., M. Knani, P. Simonin, B. Sutter, and H. Sahm (1993), Isoprenoid biosynthesis in bacteria : a novel pathway for the early steps leading to isopentenyl diphosphate, Biochem. J. 295, 517-524
  15. Takahashi, S., Y. Ogiyama, H. Kusano, H. Shimada, M. Kawamukai, and K. Kadowakii (2006), Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant, FEBS. Lett. 580, 955-956 https://doi.org/10.1016/j.febslet.2006.01.023