Flavobacterium sp. Strain DS5에 의한 Oleic Acid로부터 산화불포화 지방산의 생산 및 분석

Production and Analysis of Oxygenated Unsaturated Fatty Acids from Oleic Acid by Flavobacterium sp. Strain DS5

  • 송병섭 (충북대학교 공과대학 화학공학부) ;
  • 한남수 (충북대학교 농과대학 식품공학과) ;
  • 이봉희 (충북대학교 공과대학 화학공학부) ;
  • ;
  • 김범수 (충북대학교 공과대학 화학공학부)
  • Song, Byung-Seob (Department of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, College of Agriculture, Chungbuk National University) ;
  • Lee, Bong-Hee (Department of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Hou, Ching T. (National Center for Agricultural Utilization Research, United States Department of Agriculture) ;
  • Kim, Beom-Soo (Department of Chemical Engineering, College of Engineering, Chungbuk National University)
  • 발행 : 2009.02.28

초록

식물성 오일은 다양한 생물제품 생산에 적합한 저가의 원료이다. 식물성 오일의 주성분인 oleic acid와 linoleic acid와 같은 불포화 지방산의 함량은 콩기름의 경우 각각 22%와 55%, 옥수수기름의 경우 26%와 60%, 유채기름의 경우 61%와 21%에 달한다. Hydroxy나 keto group으로 치환된 불포화 지방산들은 다른 지방산에 비해 높은 점도와 반응성 등의 특별한 화학적 특성 때문에 가소제, 계면활성제, 윤활유, 세제 등에 사용되는 유용한 산업 화합물이다. 본 연구에서는 Flavobacterium sp. strain DS5 (NRRL B-14859)를 oleic acid로부터 중간생성물로서 10-hydroxystearic acid (10-HSA)를 거쳐 10-ketostearic acid (10-KSA)로의 전환에 이용하였다. 두 개의 생물전환 생성물인 10-KSA와 10-HSA는 GC, GC-MS, $^1H-NMR$, $^{13}C-NMR$을 이용하여 정량 및 정성분석을 수행하였다. 플라스크 배양에서 10-KSA와 10-HSA의 최대 생산량은 각각 3.4 g/L와 0.5 g/L 이었다. 10-KSA 생산을 위한 최적 glucose 농도 yeast extract 농도, oleic acid 첨가시간, 첨가부피는 각각 20 g/L 이하, 5 g/L 이상, 접종 후 18 h, 0.3 ml/50 ml 이었다.

Vegetable oils are desirable inexpensive feedstocks for various bioproducts. The content of unsaturated fatty acids such as oleic and linoleic acids are 22% and 55% for soybean oil, 26% and 60% for corn oil, and 61% and 21% for canola oil, respectively. Keto and hydroxy fatty acids are useful industrial chemicals, used in plasticizer, surfactant, lubricant and detergent formulations because of their special chemical properties such as higher viscosity and reactivity compared with other fatty acids. In this study, a microbial isolate, Flavobacterium sp. strain DS5 (NRRL B-14859), was used to convert oleic acid to 10-ketostearic acid (10-KSA) via 10-hydroxystearic acid (10-HSA). Two bioconversion products, 10-KSA and 10-HSA, were quantitatively and qualitatively analyzed using gas chromatography, gas chromatography-mass spectrometry, and $^1H-$ and $^{13}C$-nuclear magnetic resonance. The maximum production of 10-KSA and 10-HSA in flask cultures were 3.4 g/L and 0.5 g/L, respectively. The optimum concentrations of glucose and yeast extract, addition time and volume of oleic acid for 10-KSA production were less than 20 g/L, more than 5 g/L, 18 hand 0.3 ml/50 ml, respectively.

키워드

참고문헌

  1. Hou, C. T. (2005), Production of value-added industrial products from vegetable oils, In Handbook of Industrial Biocatalysis, C. T. Hou, Eds, p7-1, CRC Press, Boca Raton, FL
  2. Hosokawa, M., C. T. Hou, and D. Weisleder (2003), Production of novel tetrahydrofuranyl fatty acids from a-linolenic acid by Clavibacter sp. Strain ALA2, Appl. Environ. Microbiol. 69, 3868-3873 https://doi.org/10.1128/AEM.69.7.3868-3873.2003
  3. Wallen, L. L., R. G. Benedict, and R. W. Jackson (1962), The microbial production of oleic acid to 10-hydroxystearic acid, Arch. Biochem. Biophys. 99, 249-253 https://doi.org/10.1016/0003-9861(62)90006-1
  4. Schroepfer, G. J. Jr. (1965), Enzymatic stereospecificin in the conversion of oleic acid to 10-hydroxystearic acid, J. Am. Chem. Soc. 87, 1411-1412 https://doi.org/10.1021/ja01084a067
  5. Schoepfer, F. J. Jr. and K. Bloch (1965), The stereospecific conversion of stearic acid to oleic acid. J. Biol. Chem. 240, 54-63
  6. Schroepfer, G. J. Jr. (1966), Stereospecific conversion of oleic acid to 10-hydroxystearic acid. J. Biol. Chem. 241, 5441-5447 https://doi.org/10.1007/BF00184978
  7. Litchfield, J. H. and G. E. Pierce (1986), U. S. patent 4,582,804
  8. Koritala, S., L. Hosie, C. T. Hou, C. W. Hesseltine, and M. O. Bagby (1989), Microbial conversion of oleic acid to 10-hydroxystearic acid, Appl. Microbiol. Biotechnol. 32, 299-304 https://doi.org/10.1007/BF00184978
  9. Koritala, S., L. Hosie, C. T. Hou, C. W. Hesseltine, and M. O. Bagby (1989), Microbial conversion of oleic acid to 10-hydroxystearic acid, Appl. Microbiol. Biotechnol. 32, 299-304 https://doi.org/10.1007/BF00184978
  10. Blank, W., H. Takayanagi, T. Kido, F. Meussdoerffer, N. Esaki, and K Soda (1991), Transformation of oleic acid and its esters by Sarcina lutea. Agric. Biol. Chem. 55, 2651-2652 https://doi.org/10.1271/bbb1961.55.2651
  11. Seo, C. W., Y. Yamada, N. Takada, and H. Okada (1981), Hydration of squalene and oleic acid by Corynebacterium sp. S-401, Agric. Biol. Chem. 45, 2025-2030 https://doi.org/10.1271/bbb1961.45.2025
  12. El-Sharkawy, S. H., W. Yang, L. Dostal, and J. P. Rosazza (1992), Microbial oxidation of oleic acid, Appl. Environ. Microbiol. 58, 2116-2122
  13. Lanser, A. C. (1993), Conversion of oleic acid to 10-ketostearic acid by a Staphylococcus sp., J. Am. Oil Chem. Soc. 70, 543-545 https://doi.org/10.1007/BF02542591
  14. Hou, C. T. (1994), Production of lO-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-14859), Appl. Environ. Microbiol. 60, 3760-3763
  15. Hou, C. T. (1994), Conversion of linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid by Flavobacterium sp. (NRRL B-14859), J. Am. Oil Chem. Soc. 71, 975-978 https://doi.org/10.1007/BF02542264
  16. Hou, C. T. (1995), Is strain DS5 hydratase a C-10 positional specific enzyme? Identification of bioconvrsion products from a- and $\gamma$-linoleic acids by Flavobacterium sp. DS5, J. Ind. Microbiol. 14, 31-34 https://doi.org/10.1007/BF01570063
  17. Song, B.-S. (2007), Production and analysis of oxygenated unsaturated fatty acids from oleic acid by Flavobacterium sp. strain DS5, M. S. Thesis, Dept. of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Korea