Statistical Optimization of Production Medium for Enhanced Production of Itaconic Acid Biosynthesized by Fungal Cells of Aspergillus terreus

Aspergillus terreus에 의해 생합성되는 이타콘산의 생산성 증가를 위한 통계적 생산배지 최적화

  • Jang, Yong-Man (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Shin, Woo-Shik (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Do-Hoon (Korea Institute of Industrial Technology) ;
  • Kim, Sang-Yong (Korea Institute of Industrial Technology) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeong, Yong-Seob (Division of Biotechnology, Chonbuk National University) ;
  • Chun, Gie-Taek (School of Bioscience and Biotechnology, Kangwon National University)
  • Published : 2009.02.28

Abstract

Statistical optimization of the production medium was carried out in order to find an optimal medium composition in itaconic acid fermentation process. Itaconic acid utilized in the manufacture of various synthetic resins is a dicarboxylic acid biosynthesized by fungal cells of Aspergillus terreus in a branch of the TCA cycle via decarboxylation of cis-aconitate. Through OFAT (one factor at a time) experiments, six components (glucose, fructose, sucrose, soluble starch, soybean meal and cottonseed flour) were found to have significant effects on itaconic production among various carbon- and nitrogen-sources. Hence, using these six factors, interactive effects were investigated via fractional factorial design, showing that the initial concentrations of sucrose and cottonseed flour should be high for enhanced production of itaconic acid. Furthermore, through full factorial design (FFD) experiments, negative effects of $KH_2PO_4$ and $MgSO_4$ on itaconic acid biosynthesis were demonstrated, when excess amounts of the each component were initially added. Based on the FFD analysis, further statistical experiments were conducted along the steepest ascent path, followed by response surface method (RSM) in order to obtain optimal concentrations of the constituent nutrients. As a result, optimized concentrations of sucrose and cottonseed flour were found to be 90.4g/L and 53.8g/L respectively, with the corresponding production level of itaconic acid to be 4.36 g/L (about 7 fold higher productivity as compared to the previous production medium). From these experimental results, it was assumed that optimum ratio of the constituent carbon (sucrose) and nitrogen (cottonseed flour) sources was one of the most important factors for the enhanced production of itaconic acid.

Aspergillus terreus에 의한 이타콘산 생산 발효공정에서 생산균주의 성장을 어느 정도 제한시킴으로써 배양생리적 특성이 이타콘산 생합성 쪽으로 치우치도록 통계적 방법을 적용하여 itaconic acid의 생산배지 조성을 최적화하는 연구를 수행하였다. 이타콘산은 TCA회로를 거쳐 합성된 cis-aconitic acid의 디카르복실화 반응에 의해 생합성되는 고부가 화학원료물질이다. 우선 One factor at a time (OFAT) 방법을 이용하여 이타콘산의 생산성 증가에 크게 영향을 미치는 중요한 탄소원들로 sucrose, glucose, fructose와 soluble starch를 확인할 수 있었고, 질소원들로는 cottonseed flour와 soybean meal을 찾을 수 있었다. Fractional factorial design을 통하여 이들 6가지 요인들 간의 상호작용의 정도를 확인한 결과 sucrose와 cottonseed flour간의 상호작용의 정도가 가장 컸고, 나머지 요인들 간의 상호작용의 정도는 작거나 혹은 이타콘산 생산에 오히려 부정적인 결과를 나타냈다. 또한 full factorial design (FFD) 실험을 통해 생산배지에 $KH_2PO_4$$MgSO_4$가 과량 첨가되면 이타콘산의 생산성이 심각하게 저해됨을 알 수 있었다. FFD의 1차모델식을 근간으로 하여 최급상승법 (steepest ascent method, SAM)을 적용하여 sucrose, cottonseed flour, $KH_2PO_4$$MgSO_4$의 최적 농도로 향하는 가장 가파른 기울기를 구함으로써, 신속하고 효율적으로 최적 농도지점에 대한 정보를 얻을 수 있었다. SAM이 제시해주는 농도 부근에서 반응표면분석 (response surface method, RSM)을 적용하여 각 배지성분의 농도를 최적화시키기 위해, 2개의 중요한 요인인 sucrose와 cottonseed flour를 이용하여 중심합성계획 (central composite design, CCD) 실험을 수행하였다. 그 결과 이타콘산의 최적 배지 조건은 sucrose 90.4 g/L, cottonseed flour 53.8 g/L인 것으로 관찰되었고, 이 농도에서 이타콘산의 생산성은 초기 사용된 배지에서의 생산성에 비해 약 7배 증가한 4360 mg/l로 나타났다. 이로부터 탄소원 (C)으로 사용한 sucrose와 질소원 (N)으로 사용한 cottonseed flour 간의 C/N 비율이 이타콘산의 생산성에 큰 영향을 미친다는 것을 확인할수 있었다.

Keywords

References

  1. Kobayashi, T. and Nakamura, I. (1964), Dynamic in mycelial concentration of Aspergillus terreus K26 in steady state of continous culture, J. Ferment. Technol. 44, 264-274
  2. Naihu, J. and Wang, S. S. (1986), Continous itaconic acid production by Aspergillus terreus immobilized in a porous disk bioreactor, Appl. Micro. Biotechnol. 23, 311-314 https://doi.org/10.1007/BF00257025
  3. Kokufuta, E., Suzuki, S., and Nakamura, I. (1988), Flocculation of Aspergillus terreus with polyelectrolyte complex and production of itaconic acid with the flocculate mycelia, J. Ferment. Technol. 60, 433-439
  4. Reddy, C. S. and K., R. P. Singh (2002), Enhanced production of itaconic acid from com starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR 10, Bioresour. Tech. 85, 69-71 https://doi.org/10.1016/S0960-8524(02)00075-5
  5. Bressler, E. and S. Braun (2000), Conversion of citric acid to itaconic acid in a novel liquid membrane bioreactor, J. Chem. Technol. Biotechnol. 75, 66-72 https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<66::AID-JCTB176>3.0.CO;2-U
  6. Jaklitsch, W. M., C. P. Kubick, and M. C. Scrutton (1991), The subcellular organization of itaconate biosynthesis in Aspergillus terreus, J. Gen. Microbiol. 137, 533-539 https://doi.org/10.1099/00221287-137-3-533
  7. Winskill, N. (1983), Tricarboxylic acid cycle activity in relation to itaconic acid biosynthesis by Aspergillus terreus, J. Gen. Microbiol. 129, 2877-2883 https://doi.org/10.1099/00221287-129-9-2877
  8. Bentley, R. and Thiessen, C. P. (1939), Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with 14C-labeled substrates, J. Biol. Chem. 226, 673-687
  9. Bentley, R. and Thiessen, C. P. (1957), Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role citrate, J. Biol. Chem. 226, 689-701
  10. Eirnhjillen KE and Larsen H. (1955), The mechanism of itaconic acid formation by Aspergillus terreus. II. The effect of substrates and inhibitors, Biochem. 60, 139-147 https://doi.org/10.1042/bj0600139
  11. Kautola, H., Vassilev, N., and Linko, Y.-Y. (1989), itaconic acid production by immobilized Aspergillus terreus on sucrose medium, Biotechnol. Lett. 11, 313-318 https://doi.org/10.1007/BF01024510
  12. Kautola, H., Rymowicz, W., Linko, Y.-Y., and Linko, P. (1991), itaconic acid production by immobilized Aspergillus terreus with varied metal addition, Appl. Microbiol. Biotechnol. 35, 154-158 https://doi.org/10.1007/BF00184679
  13. Kautola, H., Vahvaselka, M., Linko, Y.-Y., and Linko, P. (1985), itaconic acid production by immobilized Aspergillus temα뻐 from xylose and glucose, Biotechnol. Lett. 7, 167-172 https://doi.org/10.1007/BF01027812
  14. Rychtera, M. and D. A. J. Wase (1981), The growth of Aspergillus tereus and the production of itaconic acid in batch and continous cultures. The influence of pH, J. Chem. Biotechnol. 31, 509-521 https://doi.org/10.1002/jctb.280310168
  15. Box, G. E. P. and J. S. Hounter (1957), Multifactor experimental design for exploring response surface, Ann. Math. Stat. 28, 195-242 https://doi.org/10.1214/aoms/1177707047
  16. Cochran, W. G. and G. M. Cox. (1957), Experimental design, John Wiley & Sons Inc., New York, U.S.A., 335-375
  17. Box GEP and Hunter JS (1978), Fractional factorial design at two levels. In: Statistics for experimenters. New York: John Wiley & Sons, 374-418
  18. J. A. Comell (1990), Experiments with mixtures, designs, models and the analysis of mixture data, 2nd edn., Wiley, New York
  19. Kleijnen, J. P. C., den Hertog, D., and Angun, E. (2004), Response surface methodology's steepest ascent and step size revisited, Enwpean Journal of Operational Research 159, 121-131 https://doi.org/10.1016/S0377-2217(03)00414-4
  20. Dowlathabad MuralidharaRao, S. M. D. Jaheer Hussain, V. Pandu Rangandu, K. Subramanyam, G. Sivarama Krishna and A. V. N. Swamy (2007), Fennentative production of itaconic acid by Aspergillus terreus using Jatropha seed cake, African Journal of Biotechnology 6, 2140-2142 https://doi.org/10.5897/AJB2007.000-2333
  21. http://www.calorie-count.com/calories/item/12007.html
  22. Aracil, J. (1997), Use of Factorial design of Experiments in the determination of Adsorption Equilibrium constants: Methyl Iodide on charcoals, J. Chem. Tech. Biotechnol. 38, 143-151 https://doi.org/10.1002/jctb.280380302