Biosynthesis of ceramide by deletion mutant of Saccharomyces cerevisiae

Saccharomyces cerevisiae deletion mutant의 세라마이드 생합성

  • Kim, Se-Kyung (Department of Biological Engineering, Inha University) ;
  • Noh, Yong-Ho (Department of Biological Engineering, Inha University) ;
  • Yun, Hyun-Shik (Department of Biological Engineering, Inha University)
  • Published : 2009.02.28

Abstract

Ceramide is important not only for the maintenance of the barrier function of the skin but also for the water-binding capacity of the stratum corneum. Though the effectiveness of ceramide is not understood fully, ceramide has become a widely used ingredient in cosmetic and pharmaceutical industries. However, ceramide production from Saccharomyces cerevisiae has not been widely studied and the quantity are very low. Gene deletion in the cell is used frequently to investigate the function of gene and verification research of drug target. Specially, deletion mutant library is useful for a large amount functional analysis of gene. In this study, deletion mutants of genes on the metabolic pathway of ceramide synthesis in S. cerevisiae were grown in a batch culture and the cellular content of ceramide was measured. The ceramide content was highest in ${\triangle}$ydc1 mutant and 6 mg ceramide/g cell was obtained.

Saccharomyces cerevisiae의 deletion mutant를 이용하여 ydc1, ypc1, scs7, sur1, csg2, ipt1, Icb4, Icb5, dpll의 deletion이 세라마이드의 생산에 미치는 영향을 고찰하였다. 세라마이드는 ELSD가 연결된 HPLC를 통하여 분석하였으며 ${\triangle}$ydc1 mutant의 세라마이드 생산량이 6 mg ceramide/g cell로 최대량을 나타내었으며 ${\triangle}$sur1 mutant, ${\triangle}$lcb5 mutant, ${\triangle}$dpll mutant의 경우 control로 사용한 BY4742와 비슷한 세라마이드 생산량을 나타내었고, 그 외 ${\triangle}$ypc1 mutant, ${\triangle}$scs7 mutant, ${\triangle}$csg2 mutant, ${\triangle}$ipt1 mutant, ${\triangle}$lcb4 mutant는 BY4742보다 낮은 세라마이드 생산량을 나타내었다.

Keywords

References

  1. Lee, J. H. (2004), Systems Biotechnology, Bioindustry 38, 10-15
  2. Kim, D. U., M. S. Won, S. J. Choi, S. T. Pail, M. U. Nam, Y. S. Shin, L. L. Kim, Y. H. Hook, H. J. Lee, Y. J. Jang, K. S. Chung, D. S. Kim, K. W. Song, H. M. Park, K. H. Kim, H. B. Kim, H. S. Kang. H. O. Park, H. S. Yoo, and K. L. Loe (2006), Current progress of the gεnome-wide deletion project in the fission yeast, Schizosaccharomyces pombe and its application: functional genomics and HCS drug target screening, In Bioscience, Promise for the future, Y. K. Kwon, J. H. Park, and M. K. Lee Eds; Proc. Korean Society for biochemistry and Molecular biology 2006, Seoul, p 173ᄈ돀㒗⨀壘⶗⨀恔㒗⨀돐胊㒗⨀灕ᢗ⨀〰㥟瘲㑮ㅟ㈵弰〴
  3. Han, S. J., M. H. Lee, D. U. Kim, H. O. Park, K. L. Hoe, and D. S. Kim (2006), Bioinformatics for comparative genomics study of S. pombe, In Bioscience, Promise for the future, Y. K. Kwon, J. H. Park, and M. K. Lee Eds; Proc. Korean Society for biochemistry and Molecular biology 2006, Seoul, p173
  4. Im, D. S. (2004), Sphingosine, Sphingosine kinase and Apoptosis, Biochem. Mol. Biol. News 24(1), 38-72
  5. Hanmnn, Y. A and Bell R M (1987), Lysosphingolipid inhibit protein kinase C : implications for the sphingolipidoses. Science 235(4789), 670-674 https://doi.org/10.1126/science.3101176
  6. Cuvillier, O. (2002), Sphingosine in apoptosis signaling, Biochim. Biophys. Acta. 1585(2-3), 153-162 https://doi.org/10.1016/S1388-1981(02)00336-0
  7. Lynch, K. R. and D. S. Im (1999), Life on the edg, Trends pharmacol. Sci. 20(12), 473-475 https://doi.org/10.1016/S0165-6147(99)01401-7
  8. Rupeic, J. and V. Maric (1998), Isolation and chemical composition of the ceramide of the candida lipolytica yeast, Chem. Phys. Lipids, 91, 153-161 https://doi.org/10.1016/S0009-3084(97)00106-0
  9. Hong, S. P., C. H. Lee, S. K. Kim, H. S. Yun, J. H. Lee, and K. H. Row (2004), Mobile phase compositions for ceramide m by normal phase high performance liquid chromatography, Biotechnol. Bioprocess Eng. 9, 47-51 https://doi.org/10.1007/BF02949321
  10. Thomas, J. M., E. C. Aida, R. B. Phyllis, and S. F. Anthony (1999), The separation and direction detection of ceramide and sphingoid bases by normal-phase high performance liquid chromatography and evaporative light-scattering detection, Anal. Biochem. 276, 242-250 https://doi.org/10.1006/abio.1999.4354
  11. http://pathway. yeastgenome.org/
  12. Kim, S. K., Y. H. Noh, and H. S. Yun (2008), The ceramide contents of Saccharomyces cerevisiae in batch culture, Korean J Biotechnol. Bioeng. 23(5), 449-451
  13. Mao, C., R. Xu, A. Bielawska, and L. M. Obeid (2000), Colning of an Alkaline Ceramidase from Saccharomyces cerevisiae, J Biologic. Chem. 275(10), 6876-6884 https://doi.org/10.1074/jbc.275.10.6876
  14. Mao, C., R. Xu, A. Bielawska, Z. M. Szulc, and L. M. Obeid (2000), Cloning and Characterization of a Saccharomyces cerevisiae Alkaline Ceramidase with Specificity for Dihydroceramide, J Biologic. Chem. 275(40), 31369-31378 https://doi.org/10.1074/jbc.M003683200
  15. Stock, S. D., H. Hama, J. A. Radding, D. A. Young, and J. Y. Takemoto (2000), Syringomycin E Inhibition of Saccharomyces cerevisiae: Requirement of Biosynthesis of Sphingolipids with Very-Long-Chain Fatty Acids and Mannose- and Phosphoinositol- Containing Head Groups, Antimicrob. Agents Chemother. 44, 1174-1180 https://doi.org/10.1128/AAC.44.5.1174-1180.2000
  16. Beeler, T. J., D. Fu, J. Rivera, E. Monaghan, K. Bagle, and T. M Dunn (1997), SURl (CSG1/BCL21), a gene necess따y for growth of Saccharomyces cerevisiaein the presence of high Ca2+ concentrations at 37${^{\circ}C}$, is required for mannosylation of inositolphosphorylceranride, Mol. Gen. Genet. 255, 570-579 https://doi.org/10.1007/s004380050530
  17. Nagiec, M. M., M. Skrzypek, E. E. Nagiec, R. L. Lester, and R C. Dickson (1998), The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases, J. Biol. Chem. 273(31), 17437-19442 https://doi.org/10.1074/jbc.273.31.19437
  18. Funato, K., R. Lombardi, B. Vallee, and H. Riezman (2003), Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae, J. Biol. Chem. 278(9), 7325-7334 https://doi.org/10.1074/jbc.M209925200