Research trends, applications, and domestic research promotion stratigies of metabolomics

대사체학의 연구 동향, 응용 및 국내 연구 활성화 방안

  • Kim, So-Hyun (College of Pharmacy, Chung-Ang University) ;
  • Yang, Seung-Ok (College of Pharmacy, Chung-Ang University) ;
  • Kim, Kyoung-Heon (College of Life Science and Biotechnology, Korea University) ;
  • Kim, Young-Suk (Department of Food Science and Technology, Ewha Womans University) ;
  • Liu, Kwang-Hyeon (College of Medicine, Inje University) ;
  • Yoon, Young-Ran (School of Medicine, Kyungpook National University) ;
  • Lee, Dong-Ho (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Choong-Hwan (Department of Biotechnology, Konkuk University) ;
  • Hwang, Geum-Sook (Metabolome Analysis Team, Korea Basic Science Institute) ;
  • Chung, Myeon-Woo (Pharmacology Department, National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Choi, Ki-Hwan (Pharmacology Department, National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University)
  • 김소현 (중앙대학교 약학대학) ;
  • 양승옥 (중앙대학교 약학대학) ;
  • 김경헌 (고려대학교 식품공학과) ;
  • 김영석 (이화여자대학교 식품공학과) ;
  • 유광현 (인제대학교 의과대학 약리학교실) ;
  • 윤영란 (경북대학교 의과대학 분자의학교실) ;
  • 이동호 (고려대학교 생명과학대학) ;
  • 이충환 (건국대학교 생명공학과) ;
  • 황금숙 (한국기초과학지원연구원) ;
  • 정면우 (국립독성과학원 대사약리팀) ;
  • 최기환 (국립독성과학원 대사약리팀) ;
  • 최형균 (중앙대학교 약학대학)
  • Published : 2009.04.29

Abstract

As one of the new areas of 'omics' technology, there is increasing interest in metabolomics, which involves the analysis of low-molecular-weight compounds in cells, tissues, and biofluids, and considers interactions within various organisms and reactions of external chemicals with those organisms. However, metabolomics research is still at a fundamental stage in Korea. Therefore, the purpose of this study was to establish a strategic long-term plan to revitalize the national metabolomics approach and obtain the elementary data necessary to determine a policy for effectively supporting metabolomics research. These investigations clarified the state of metabolomics study both in Korea and internationally, from which we attempted to find the potentiality and fields where a metabolomics approach would be applicable, such as in medical science. We also discuss strategies for developing metabolomics research. This study revealed that promoting metabolomics in Korea requires cooperation with metabolomics researchers, acquisition of advanced technology, capital investment in metabolomics approach, establishment of metabolome database, and education of metabolome analysis experts. This would reduce the gap between the national and international levels of metabolomics research, with the resulting developments in metabolomics having the potential to greatly contribute to promoting biotechnology in Korea.

대사체학은 동 식물, 미생물뿐만 아니라 식품, 농업, 의약품에 이르기까지 다양한 분야에서 적용될 수 있으며, 최근 미래를 선도할 학문으로서 주목 받고 있는 분야이다. 하지만 우리나라의 대사체학 연구는 아직 기초적 단계이며, 대사체학에 대한 인식도 부족한 상황이다. 따라서 본 논문에서는 대사체 연구 방법에 대해서 간단히 소개하였고, 국내 외 대사체학 연구현황, 대사체 연구의 필요성과 활용방안, 대사체 연구 수행 활성화를 위한 전략들을 소개하였다. 대사체학은 활용 범위가 매우 넓은 것이 특징인데, 예를 들어 functional genomics, 생물의 계통 분류, 생물의 대사경로 규명, 생물을 이용한 유용물질 생산, 신약 및 신소재 개발, biomarker의 개발, 식품 및 천연물 제제의 품질관리, 그리고 환경 및 독성 모니터링 등에 활용될 수 있다. 그러나 국내 대사체학 연구는 초기단계에 머물러 있는 실정이므로 국내 대사체 연구의 발전을 위해서는 연구 주체간의 협력, 해외 선진 기술 습득, 연구 개발 투자, 대사체 분석 전문가 육성, metabolome database 구축 등이 필요하다. 대사체학 연구에 대한 이러한 지원이 이뤄진다면, 대사체학 분야에 있어서 국내수준과 세계수준의 격차는 줄어들 것이다. 또한 결과적으로 대사체학 연구의 발전은 한국 생명공학 분야 (BT)의 발전에도 크게 이바지할 것으로 사료된다.

Keywords

References

  1. Chung, B. C. (2006), Metabolomics technologies for the study of disease. Molecular and cellular biology news 18, 17-27
  2. Ba1es, J. R., D. P. Higham, I. Howe, J. K. Nicho1son, and P. J. Sadler (1984), Use of high resoution proton nuclear magnetic resonance spectroscopy for rapid multicomponent analysis of urine. Clin. Chem. 30, 426-432
  3. Beckonert, 0., H. C. Keun, T. M D. Ebbels, J. Bundy, E. Holmes, J. C. Lindon, and J. K. Nicholson (2007), Metabolic profiling, metabo;omic and metabonomicprocedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692-2703 https://doi.org/10.1038/nprot.2007.376
  4. Bundy, J. G., D. J. Spurgeon, C‘ Svendsen, P. K. Hankard, J. M. Weeks, D. Osborn, J. C. Lindon, and J. K. Nicholson (2004), Ecotoxicology 13, 797-806 https://doi.org/10.1007/s10646-003-4477-1
  5. Cheng, L. L., M. A. Burns, J. L. Taylor, W. He, E. F. Halpem, W. S. McDougal, and C. L. Wu (2005), Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res. 65, 3030-3034 https://doi.org/10.1158/0008-5472.CAN-04-4106
  6. Cunnick, W. R , J. B. Cromie, R Cortell, B. Wright, E. Beach, F. Seltzer, and S. Miller (1972), Value of biochemical profiling in a periodic health examination program: analysis of 1,000 cases. Bull. N Y Acad. Med. 18, 5-22
  7. Devaux, P. G., M. G. Homing, and E. C. Homing (1971), Benyzl-oxime derivative of steroids; a new metabolic profile procedure for human urinary steroids. Anal. Lett. 4, 151 https://doi.org/10.1080/00032717108059686
  8. Duran, A. L., J. Yang, L. Wang, and L. W. Sumner (2003), Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283-2293 https://doi.org/10.1093/bioinformatics/btg315
  9. Ebbels, T. M. D., E. Holmes, J. C. Lindon, and J. K. Nicholson (2004), Evaluation of metabolic variation in normal rat strains from a statistical analysis of 'H NMR spectra of urine. J. Pharm. Biomed. Anal. 36, 823-833 https://doi.org/10.1016/j.jpba.2004.08.016
  10. Fiehn, O. (2003), Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62, 875-886 https://doi.org/10.1016/S0031-9422(02)00715-X
  11. Fiehn, O., J. Kopka, P. Dormann, T. Altmann, R. N. Trethewey, and L. Willmitzer (2000), Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157-1161 https://doi.org/10.1038/81137
  12. Griffin, J. L. and R. A. Kauppinen (2007), Tumour metabolomics in animal models of human cancer. J. Proteome Res. 6, 498-505 https://doi.org/10.1021/pr060464h
  13. Homing, E. C. and M. G. Horning (1971a), Human metabolic profiles obtained by GC and GC/MS. J. Chromatogr. Sci. 9, 129-140 https://doi.org/10.1093/chromsci/9.3.129
  14. Homing, E. C. and M. G. Homing (1971b), Metabolic profiles: gas-phase methods for analysis of metabolites. Clin. Chem. 17, 802-809
  15. Huhman D. V. and L. W. Sumner (2002), Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59, 347-360 https://doi.org/10.1016/S0031-9422(01)00432-0
  16. Jason, P. et al. 2007. 10. Emerging technologies 2007. Technology review. March/April, http://www.technologyreview.com/Infotech/l8333/
  17. Johansen H. N., V. Glitso, and K. E. B. Knudsen (1996), Influence of extraction solvent and temperature on the quantitative determination of oligosaccharidesfrom plant materials by high-performance liquid chromatography. J. Agric. Food Chem. 44, 1470-1474 https://doi.org/10.1021/jf950482b
  18. Jordan K. W. and L. L. Cheng (2007), NMR-based metabolomics approach to ta rget biomarkers for human prostate cancer. Expert Rev. Proteomics 4, 389-400 https://doi.org/10.1586/14789450.4.3.389
  19. Lange B. M., R E. B. Ketchum, and R B. Croteau (2001), Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. Plant Physiol. 127, 305-314 https://doi.org/10.1104/pp.127.1.305
  20. Le Gall, G., M. S. DuPont, F. A. Mellon, A. L. Davis, G. J. Collins, M. E. Verhoeyen, and I. J. Colquhoun (2003), Characterization and content of flavonoid glycosides in genetically modified tomato(Lycopersicon esculentum) Fruits. J. Agrric. Food Chem. 51, 2438-2446 https://doi.org/10.1021/jf025995e
  21. Marshall, A. G. (2000), Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development. Int J Mass Spectrom. 200, 331-356 https://doi.org/10.1016/S1387-3806(00)00324-9
  22. Mroczek, W. J. (1972), Biochemical profiling and the natural history of hypertensive diseases. Circulation. 45, 1332-1333 https://doi.org/10.1161/01.CIR.45.6.1332
  23. Nicholson, J. K., M. O'Flynn, P. J. Sadler, A. Macleod, S. M. Juul, and P. H. Sonksen (1984), Proton NMR studies of serum, plasma and urine from fasting normal, and diabetic subjects. Biochemical J. 217, 265-275 https://doi.org/10.1042/bj2170265
  24. Robert L. L., A. D. Jones, and Y. Shachar-Hill (2007), Nuclear magnetic resonance: an important tool in metabolomics research. Nat. Rev. Mol. Cell Biol. 8, 167-174 https://doi.org/10.1038/nrm2098
  25. Rosenblum, E. S., M. R. Viant, B. M. Braid, J. D. Moore, C. S. Friedman, and R S. Tjeerdema (2005), Metabolomics 1, 199-209 https://doi.org/10.1007/s11306-005-4428-3
  26. Sauter, H., M. Lauer, and H. Fritsch (1991), Metabolic profiling of plants a new diagnostic technique, pp288-99. In D. R., Baker, J. G. Fenyes, and W. K. Moberg (eds.), American Chemical Society Symposium Series, No. 443. American Chemical Society, Washington DC
  27. Scheible, W. R., A. Gonzalez-Fontes, R Morcuende, M. Lauerer, M. Geiger, J. Glaab, A. Goon, E. D. Schuize, and M. Stitt (1997), Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translation modification and turnover of nitratereductase. Planta 203, 304-319 https://doi.org/10.1007/s004250050196
  28. Scheible W. R., A. Krapp, and M. Stitt (2000), Reciprocal diumal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase,citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ. 23, 1155-1167 https://doi.org/10.1046/j.1365-3040.2000.00634.x
  29. Stentiford, G. D., M. R. Viant, D. G. Ward, P. J. Johnson, A. Martin, W. Wenbin, H. J. Cooper, B. P. Lyons, and S. W. Feist (2005), OMICS 9, 281-299 https://doi.org/10.1089/omi.2005.9.281
  30. Stitt, M. (1999), Nitrate regulation of metabolism and growth. Curr Opin Plant Biol. 2, 178-186 https://doi.org/10.1016/S1369-5266(99)80033-8
  31. Stitt, M. and U. Sonnewald (1995), Regulation of matabolism intransgenic plants. Annu. Rev. Plant Physiol. 46, 341-368 https://doi.org/10.1146/annurev.pp.46.060195.002013
  32. Sumner, L. W., P. Mendes, and R. A. Dixon (2003), Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817-836 https://doi.org/10.1016/S0031-9422(02)00708-2
  33. Taylor J., R. D. King, T. Altmann, and O. Fiehn (2002), Application of metabolornicsto plant genotype discrimination using statistics and machine leaming. Bioìnformatics 18, 241-248
  34. Tolstikov V. V., A. Lommen, K. Nakanishi, N. Tanaka, and O. Fiehn (2003), Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolornics. Anal Chem. 75, 6737-6740 https://doi.org/10.1021/ac034716z
  35. Viant, M. R., C. A. Pincetich, and R. S. Tjeerdema (2006), Aquat. Toxicol. 77, 359-371 https://doi.org/10.1016/j.aquatox.2006.01.009
  36. Viant, M. R., E. S. Rosenblum, and R. S. Tjeerdema (2003), Environ. Sci. Technol. 37, 4982-4989 https://doi.org/10.1021/es034281x
  37. Yang C., A. D. Richardson, J. W. Smith, and A. Osterman (2007), Comparative metabolomics of breast cancer. Pac. Symp. Bìocomput. 12, 181-192
  38. http://www-en.mpimp-golm.mpg.de. assessed March 12. 2008
  39. http://biology.leidenuniv.nl, assessed March 10. 2008
  40. http://www.metabolomics.bbsrc.ac.uk/. assessed March 13. 2008
  41. http://www1.imperial.ac.uk/medicine/about/divisions/soralbiomol_med/, assessed March 15. 2008
  42. http://www.chemistry.manchester.ac.uk/, assessed March 12. 2008
  43. http://www.noble.org/PlantBio/MS/index.html, assessed March 10. 2008
  44. http://fiehnlab.ucdavis.edu/, assessed March 14. 2008
  45. http://www.iab.keio.ac.jp/en/. assessed March 12. 2008