586 S EEL LR

P2P J|EY m 4ol A
MapReduce 71¥ &£
(An Application of MapReduce

Technique over Peer—to-Peer
Network)

,
2 2 2

(Jian-Ji Ren)

o x4 7| ™
(Jae-Kee Lee)

2 % B =F9 B3I PP UENZ HdA E3
373 qZA)AE AYe7) 9§ MapReduced] A]
t}. MapReduces Ee-9-SHFH FollA oi&aF dolel9
HEMHE H ALEH AZEYY =ZydYzo|ch
P2P 7Ivt HIEH =Y ER& =T 1170] dAEA S
F Jon, o == uFg AEr] s Pastryh=
DHT @8 ZZEZY AH8o] 2¥L 23tk B =8
9 Ade ZyAdYIsr G AN EeH FHAEL H

A3e 7+eH P2P LﬂE"Ji Alz=dle] Thekgt o) Ze]A o
Aol H8"E F UL Holx otk FF @ d %°P°
P2P U EH=9 WE ’éw‘-‘r o] 4l AN S

‘FH‘

AT 2 FAE A #AE Aoz Fugit)
F19)E : MapReduce, ¥ %4, DHT, P2P U ES=

Abstract The objective of this paper describes the
design of MapReduce over Peer-to-Peer network for
dynamic environments applications. MapReduce is a
software framework used for Cloud Computing which
processing large data sets in a highly-parallel way.
Based on the Peer-to-Peer network character which
node failures will happen anytime, we focus on using a
DHT routing protocol which named Pastry to handle the
problem of node failures. Our results are very promising

CE =R 20085 E Sotulstm STy Mgl o)t A7Ee
EEE 2008 A EAFNM P2P WIES F 3ol M MapReduce 88

o =¥
o ARz YUY =B H99 AY

toEe o Boldidn AFE T
jimey@donga.ac.kr
oFANY Folista HAFE T we

jklee@dau.ac.kr

=RF4 0 20009 49 149

AArgE 20009 69 30¢
Copyright©2009 5222183 : 71 B& o} m4 Z29 A% o] A=
9 AA EE d¥d i3 BAR T Xy ’\l’i/] H 24E 37

o W, AEE AR $HOR AT + gonl A Aol B g0
$ WA BAlsoF T o) oo R 0w ¥A) WE, 2% A% F RE
2] AR AAT SRz Aol dsfei Aol H71E A Hl 8- A Raol
ww

Bse =g AFEe A4 R 8 A158 A83(2009.8)

FEo A4 2 HE A 159 A 8 Z(20008)

and indicate that the framework could have a wide
application in P2P network systems while maintaining
good computational efficiency and scalability. We believe
that, P2P networks and parallel computing emerge as
very hot research and development topics in industry and
academia for many years to come.

MapReduce, parallel computing, DHT,
PZP Network

Key words :

1.ME

The advances in Internet, access technologies,
availability of high bandwidth and parallel progra-
mming have opened new opportunities to dominate
distributed computing research. In recent years,
Peer-to-Peer (P2P) architecture has aroused much
attention both in research communication and indu-
stries. It has played a vital role in wide spreading
growth of computing applications including grid
computing, utility computing and other distributed
computing applications. P2P networking is promis—
ing for its several favorable characteristics, such as
self-organization, self-configuration, self-healing, easy
maintenance, high scalability and reliable service.

Cluster Systems and P2P Systems are the two
most common types of resource sharing systems
currently in wide use. These two systems evolved
from different communities and serve different
needs. Cluster systems interconnect computer clus-
ters, storage systems, instruments, and in general
the available infrastructure of large scientific
computing centers in order to make possible the
sharing of existing resources, such as CPU time,
storage, equipment, data, and software applications.
Most Cluster systems are of moderate-size, they
are centrally or hierarchically administered and
there are strict rules governing the availability of
the participating resources.

Challenges in scaling computing to increasingly—
large datasets have become a serious issue. The
trends on data growth and processor speed im-
provement suggest that some form of parallelization
is required to process data. It is clear that datasets
readily available today and the types of analyses
that researches wish to conduct have outgrown the
capabilities of individual computers. The only prac-

tical recourse is to distribute the computation

P2P Y E S Ao A MapReduce 71 &4 587

across multiple cores, processors, or machines. The
traditional cluster computing could not handle the
problem that dealing with large-scale data-intensive
at a low cost. The leading example is Google.
Recently, Jeffrey Dean and Sanjay Ghemawat in
Google Corporation proposed a parallel framework,
MapReduce [1], which can provide this necessary
simplicity, while at the same time offering load
and fault
petabytes of data per a day [2].

balancing tolerance to

process 20

There has been existed some MapReduce archi-
tectures, such as Google’s [1] and Hadoop [3]. They
are based on a master-slave model. A job is
submitted by a node as a master that selects idle
nodes as slave and assigns each one a map or reduce
task. When all map and reduce tasks have been
completed, the result was returned to the master
node. The failure of a slave node is managed by
re-executing its task on other idle slave nodes, while
data structures can be written out so if a failure
occurs a new copy can be restarted from the last
save. The master failures are not considered by
current MapReduce implementations. As designers
say that it is assumed that a master failure is unlikely
so if it fails the user must restart his/her job.

In the P2P environments, contrary to cluster
system, node failures will happen anytime, like grid
computing systems and volunteer computing systems,
where nodes join and leave the network at an
unpredictable rate. Therefore, providing effective
mechanisms to manage the nodes failures funda-
mental to exploit the MapReduce framework in the
implementation of data-intensive applications or
other network computing applications in those P2P
environments where current MapReduce mechanisms
could be unreliable. The goal of our work is to
design a new mechanism that taking the Map-
Reduce framework over the P2P network.

In this paper, we discuss the mechanisms that
using MapReduce framework over DHT P2P net-
work to compute. In this P2P network, each node
can be selected as master or slave by the mech-
anism and search each other by Distributed Hash
Table. The role assigned to a given node depends
on the current characteristics of that node, and so

it can change dynamically over time. Thus, at each

time, a limited set of nodes is assigned the master
nodes, while the other nodes are assigned the slave
nodes or idle nodes. Moreover, a main master has
some backup master nodes, which will manage it
as usual in MapReduce. The master nodes will
periodically check the status of the job on its
backup master nodes using checkpoint. In case
those backup master nodes detect the failure of the
using master node, they will elect a new master
node from themselves and restart the job from the
last available checkpoint.

This paper is organized as follows! in section 2,
we give details description of the problem of using
MapReduce over P2P network and our solutions.
Section 3 introduces the simulation studies that use
the Parstry protocol to simulate the data transmis—
sion over P2P network with MapReduce process.

Finally, we conclude this paper in section 4.

2. MapReduce over P2P Network

2.1 Overview

As noted, our system is a distributed infrastruc-
ture for MapReduce to share data and computability
over the low—cost P2P network. The whole archi-
tecture of MapReduce over PZ2P network includes
four basic roles, shown in Fig. 1: User (U), tracker
server (T), master nodes (M), slave nodes (S) and
idle nodes (I). As mentioned above, nodes in P2P
network are dynamically assigned the master nodes
role, slave nodes role, idle nodes role or tracker
server; hence each node could change their cha-
racters over time. The architecture of node in our
system includes three lays: Access Service Appli-
cation, Distributed File Locating, and P2P Routing
Protocol, shown in Fig. 2.

The MapReduce over P2P network consists of
participating nodes running the MapReduce appli-
cation services. These nodes in P2P network com-
municate using a DHT PZ2P routing algorithm. The
P2P system automatically manages the joining and
leaving of nodes, locates files and services, and
runs the services requested by users.

2.2 P2P Routing Protocol

The P2P routing protocol in our system is
responsible for maintaining the organization of the

cooperation nodes and it is also responsible for

588 ARAGRH=EA)

eg---
Fig. 1 The architecture of MapReduce over P2P

Access Service Application

Distributed File Locating

P2P Routing Protocol

Fig. 2 Node architecture

locating files in the P2P network. The current
routing protocol used in our system is Pastry [4], a
PZ2P routing protocol based on a distributed hash
table (DHT). Each peer in Pastry is assigned a
128-bit peer identifier (NodeID). The NodelD is
used to give a peer’s position in a circular NodelD
space, which ranges from 0 to 2'%.1. The NodelD
is assigned randomly when a peer joins the system
and it is assumed to be generated such that the
resulting set of NodelDs is uniformly distributed in
the 128-bit space. A Pastry node efficiently routes
the message to the node with a nodeld that is
numerically closest to the key, among all currently
live Pastry nodes. The expected number of for-
warding steps in the Pastry overlay network is
O(log N),
maintained in each Pastry node is only O(log N) in

while the size of the routing table

size (where N is the number of live Pastry nodes
in the overlay network).

On another hand, each Pastry node keeps track
of its immediate neighbors in the nodeld space
(called the leaf set), and notifies applications of
new node arrivals, node failures and node re-
coveries within the leaf set. The last one, Pastry
takes in the

underlying Internet; it seeks to minimize the dis—

into account locality (proximity)

tance messages travel, according to a scalar pro-

FRo A4 2 d" A 15 E A 8 5(20098)

Legend:
—— Data Messages
..... -pp Control Messages

D User

Slave node
Master / Backup node

Tracker Server node

O Idle node

ximity metric like the ping delay. Pastry is com-

pletely decentralized, scalable, and self-organizing;

it automatically adapts to the arrival, departure and
failure of nodes. It allows for replication of data
and finds the closest replica.

2.3 Failure Recover Protocol

In the following we describe, through an exa-
mple, how a master node failure is handled in our

P2P architecture. We assume the starting situation

where U is the user that submits a MapReduce job;

M nodes are the masters and S nodes are the slaves.
The following steps are performed to submit the

job and recover from a master node failure (see

Fig. 3. All queries are supported by DHT.):

1) U sends a request to tracker server to get the list
of the available master nodes, each one cha-
racterized by a workload index that measures how
busy the node is. Tracker server orders the list by
ascending values of workload index, takes the
first element as primary master node and the next
k elements as backup master nodes. In this

example, M1 is chosen as primary master node

and M2 and M3 as backup master node (k = 2).

U submits the MapReduce job to M1 along with

the names of its backup nodes M2 and M3. M1

notifies M2 and M3 that they will act as backup

2

=

nodes for the current job. This implies that M1
will periodically backup the entire job state (e.g.,
the assignments of tasks to slave nodes, the
locations of intermediate results, etc.) on M2 and
Ma3. Beside tracker server will periodically check

whether M1 is alive.

2P W E Y 24 oll A MapReduce 713 && 589

3) M1 queries tracker server to get the list of the
available slave nodes, choosing (part of) them to
execute a map or a reduce task. As for the
masters, the choice of the slave nodes to use
can be done on the basis of a workload index
and other performance metrics. In this example,
nodes S1, S2, S3 and S4 are selected as slave
nodes. The tasks are started on the slave nodes
and managed as usual in MapReduce.

4) The primary master M1 fails. Tracker server
detects the failure of M1 and starts a procedure
based on P2P routing protocol to elect among
backup nodes of M2 or M3 to be as the new
primary master.

5

=

The new primary master M2 is elected by cho-
osing the backup node by the tracker server.
The remaining k = 1 backup master nodes (only
M3, in this example) continue to play the backup
master node role. Then, the MapReduce job starts
from the latest checkpoint available on M2.

6

il

As soon as the MapReduce job is completed M2
returns the result to U.
As above mention, the slave nodes can use such

protocol to handle the slave nodes failures recover.

3. Evaluation and Experimental Results

In order to test our MapReduce over P2P network
service performance, we build up a simulation
environment. The underlying network topology used
in our experiments is generated by GT-ITM [5] in the
Transit-Stub fashion. They are distributed in 2 transit
networks with 20 stub domains. We assign link
latencies of 150ms for intertransits domain links,
100ms for intra-transit domain links and 50ms for
stub-transit links and 20ms for intra- transit links. We
assume that the nodes leave system rate is conformed
to a Poisson distribution with parameter A and the
tracker server never leave system. The file size before
MapReduce is F and MapReduced file size is f, where
F = 1800MB. The file which should be processed is
stored in some nodes as master nodes. The Pastry’s
replica ability is k, where k = 3. The MapReduce
processing capability is t/MB = 20s/MB. In our
simulation, we use a normalized workload model.

The result for job completion time on the total
number of nodes is shown in Fig. 4. We plot the
inverse of time in minutes (which shows the am-
ount of work completed per unit time) v.s. the

number of nodes used.

)

]

U

St 2 (e3)
o (=

(d) M1 failure

(e) New primary master node M2

(f) MapReduce job completion

Fig. 3 Steps performed to submit a job

590 ARAGHEFA AREY 44 2 dE A 5 E Al 8 20098

8.4

8.3

1/tinainin)

s.2}

ol

e 208 4D8 508
nom of nodes

Fig. 4 Job completion time on the total number of nodes

4. Conclusion

For several years now, commodity cluster compu-—
ting and P2P computing have been quite common.
We have analyzed the basic differences between
cluster and P2P system. MapReduce provides a
restrictive programming environment which allows
for a variety of tasks to be easily computed in
parallel. It allows for simple parallel iteration over
data and parallel aggregation of results. This paper
design a MapReduce over Peer-to-Peer network
architecture which is based on Pastry failure recovers
protocol for dynamic environments applications. We
believe that, there is much scope for further rese-
arch in this area and using Peer-to-Peer architec-

ture to implement MapReduce will be a very issue.

References

[1] JDean and S.Ghemawat, "MapReduce: Simplified
Data Processing on Large Clusters,” In Pro-
ceedings of OSDI'04: Sixth Symposium on Ope-
rating System Design and Implementation, pp.137-
150, Dec. 2004.

[2]] Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” Communi-
cations of the ACM, vol5l, nol, pp.107-113, Jan.
2008,

[31 Hadoop http://hadeop.apache.org/core/.

[4] Pastry http://freepastry.org/.

{51 K. Calvert, M. Doar and E. Zegura, "Modeling In-
ternet Topology,” IEEE Communication Muagazine,
vol.35, neb, pp.160-163, Jun. 1997.

