시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform

  • 김범수 (강원대학교 컴퓨터과학과) ;
  • 문양세 (강원대학교 컴퓨터학부 컴퓨터과학전공) ;
  • 김진호 (강원대학교 컴퓨터학부 컴퓨터과학전공)
  • 발행 : 2009.08.15

초록

본 논문에서는 윤곽선 이미지 매칭에서 노이즈 제거 정도를 제어하기 위해 시계열 매칭의 이동평균 변환을 이용한다. 이동평균 변환을 윤곽선 이미지 매칭에 적용하게 된 동기는 이동평균 변환이 시계열의 노이즈를 감소시키므로, 이를 사용하면 윤곽선 이미지 매칭에서도 노이즈 제어 효과를 얻을 수 있을 것이라는 직관에 기반한다. 본 논문에서는 우선 윤곽선 이미지 매칭에 이동평균 변환을 적용한 $\kappa$-계수 이미지 매칭($\kappa$-order image matching)을 제안한다. 제안한 $\kappa$-계수 이미지 매칭은 윤곽선 이미지가 변환된 시계열에 $\kappa$-이동평균 변환을 적용하여 시계열(이미지) 간의 유사성을 판단한다. 다음으로, 대용량 이미지 데이터베이스를 대상으로 $\kappa$-계수 이미지 매칭을 수행하기 위한 인덱스 기반 매칭 방법을 제안하고, 그 정확성을 정형적으로 증명한다. 또한, 계수 $\kappa$와 매칭 결과와의 관계를 정형적으로 분석하고, 이에 기반하여 계수 $\kappa$를 변화시키면서 노이즈 제거 정도를 제어하는 방안을 제시한다. 실험 결과, $\kappa$-계수 이미지 매칭이 노이즈 제거 효과를 가짐을 확인하였으며, 제안한 인덱스 기반 매칭 방법은 순차 스캔에 비해 수 배 에서 수십 배 빠른 성능을 보이는 것으로 나타났다.

To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

키워드

참고문헌

  1. Agrawal, R., Faloutsos, C., and Swami, A., 'Efficient Similarity Search in Sequence Databases,' In Proc. the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Illinois, pp. 69-84, Oct. 1993 https://doi.org/10.1007/3-540-57301-1_5
  2. Faloutsos, C., Ranganathan, M., and Manolopoulos, Y., 'Fast Subsequence Matching in Time-Series Databases,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Minneapolis, Minnesota, pp.419-429, May 1994 https://doi.org/10.1145/191839.191925
  3. Keogh, E., Wei, L., Xi, X., Lee, S.-H., and Vlachos, M., 'LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures,' In Proc. the 32rd Int'l Conf. on Very Large Data Bases, Seoul, Korea, pp.882-893, Sept. 2006
  4. Moon, Y.-S., Whang, K.-Y., and Han, W.-S., 'General Match: A Subsequence Matching Method in Time-Series Databases Based on Generalized Windows,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Madison, Wisconsin, pp. 382-393, June 2002 https://doi.org/10.1145/564691.564735
  5. Loh, W.-K., Park, Y.-H., and Yoon, Y-I., 'Fast Recognition of Asian Characters Based on Database Methodologies,' In Proc. the 24th British Nat'. Conf. on Databases, Glasgow, UK, pp.37-48, July 2007 https://doi.org/10.1007/978-3-540-73390-4_5
  6. Vlachos, M., Vagena, Z., Yu, P. S., and Athitsos, V., 'Rotation Invariant Indexing of Shapes and Line Drawings,' In Proc. of ACM Conf. on Information and Knowledge Management, Bremen, Germany, pp.131-138, Oct. 2005 https://doi.org/10.1145/1099554.1099580
  7. Lee, A. J. T. et al., 'A Novel Filtration Method in Biological Sequence Databases,' Pattern Recognition Letters, vol.28, Issue 4, pp.447-458, Mar. 2007 https://doi.org/10.1016/j.patrec.2006.08.015
  8. Brailean, J. C. et al., 'Noise Reduction Filters for Dynamic Image Sequences: A Review,' In Proceedings of the IEEE, vol.83, no.9, Sept. 1995 https://doi.org/10.1109/5.406412
  9. Rosenfeld, A. and Kalk, A. C, Digital Picture Processing, Vol. 1/2, 2nd Ed., Academic Press, New York, 1982
  10. Moon, Y.-S. and Kim, J., 'Efficient Moving Average Transform-Based Subsequence Matching Algorithms in Time-Series Databases,' Information Sciences, vol.177, no.23, pp.5415-5431, Dec. 2007 https://doi.org/10.1016/j.ins.2007.05.038
  11. Rafiei, D. and Mendelzon, A. O., 'Querying Time Series Data Based on Similarity,' IEEE Trans. on Knowledge and Data Engineering, vol.12, no.5, pp.675-693, Sept. 2000 https://doi.org/10.1109/69.877502
  12. Keogh, E., 'Exact Indexing of Dynamic Time Warping,' In Proc. the 28th Int'l Conf. on Very Large Data Bases, Hong Kong, pp.406-417, Aug. 2002
  13. Han, W.-S., Lee, J., Moon, Y.-S., and Jiang, H., 'Ranked Subsequence Matching in Time-Series Databases,' In Proc. the 33rd Int'l Conf. on Very Large Data Bases, Vienna, Austria, pp.423-434, Sept. 2007
  14. Loh, W.-K., Kim, S.-W., and Whang, K.-Y., 'Index Interpolation: A Subsequence Matching Algorithm Supporting Moving Average Transform of Arbitrary Order in Time-Series Databases,' IEICE Transactions on Information and Systems, vol.E84-D, no.1, pp.76-86, 2000
  15. Chatfield, C., The Analysis of Time Series: An Introduction, 3rd Ed., Chapman and Hall, 1984
  16. Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B., 'The R$^{*}$ -tree: An Efficient and Robust Access Method for Points and Rectangles,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Atlantic City, New Jersey, pp.322-331, May 1990 https://doi.org/10.1145/93605.98741
  17. Keogh, E. and Ratanamahatana, C. A., 'Indexing and Mining Large Time Series Databases,' In Proc. The 12th Int'l Conf. on Database Systems for Advanced Applications, Tutorial, Bangkok, Thailand, Apr. 2007
  18. Gonzalez, R. C. and Woods, R. E., Digital Image Processing, 2nd Ed., Prentice Hall, New Jersey, 2002
  19. Theoharatos, C., 'A Generic Scheme for Color Image Retrieval Based on the Multivariate Wald-Wolfowitz Test,' IEEE Trans. on Knowledge and Data Engineering, vol.17, no.6, pp.808-819, June 2005 https://doi.org/10.1109/TKDE.2005.85
  20. Do, M. N., 'Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback -Leibler Distance,' IEEE Trans. on Image Processing, vol.11, no.2, Feb. 2002 https://doi.org/10.1109/83.982822
  21. Zhang, D. Z. and Lu, G., 'Review of Shape Representation and Description Techniques,' Pattern Recognition, vol.37, no.1, pp.1-19, July 2003 https://doi.org/10.1016/j.patcog.2003.07.008