Extension of Wireless Sensor Network Lifetime with Variable Sensing Range Using Genetic Algorithm

유전자알고리즘을 이용한 가변감지범위를 갖는 무선센서네트워크의 수명연장

  • 송봉기 (부산IT융합부품연구소) ;
  • 우종호 (부경대학교 전자컴퓨터정보통신공학부)
  • Published : 2009.05.30

Abstract

We propose a method using the genetic algorithm to solve the maximum set cover problem. It is needed for scheduling the power of sensor nodes in extending the lifetime of the wireless sensor network with variable sensing range. The existing Greedy Heuristic method calculates the power scheduling of sensor nodes repeatedly in the process of operation, and so the communication traffic of sensor nodes is increased. The proposed method reduces the amount of communication traffic of sensor nodes, and so the energies of nodes are saved, and the lifetime of network can be extended. The effectiveness of this method was verified through computer simulation, and considering the energy losses of communication operations about 10% in the network lifetime is improved.

가변감지범위를 갖는 무선센서네트워크의 수명연장을 위한 센서 노드의 전원 관리에서 요구되는 최대집합 커버문제를 유전자알고리즘을 이용하여 해결하였다. 기존의 경험적 탐용법(greedy heuristic method)에서는 네트워크의 동작 중 스케줄링을 반복 수행하므로 센서노드의 통신량이 증가한다. 제안한 방법에는 센서 노드의 통신 트래픽을 감소시켜 노드의 에너지 소모를 절약하여 네트워크의 수명을 연장하였다. 컴퓨터 시뮬레이션을 통해 제안한 방법의 유효성을 확인했으며 통신동작의 에너지 소모를 고려할 때 네트워크의 수명 이 약 10% 증가하였다.

Keywords

References

  1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless Sensor Networks: A Survey," Computer Networks: The International Journal of Computer and Telecommunications Networking, Vol.38, No.4, pp. 393-422, 2002.
  2. G.J. Pottie and W.J. Kaiser, "Wireless integrated sensor networks," Communications of the ACM, Vol.43, No.5, pp. 51-58, 2000. https://doi.org/10.1145/332833.332838
  3. M. Cardei, M.T. Thai, Y. Li, and W. Wu, "Energy-Efficient Target Coverage in Wireless Sensor Networks," INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, Vol.3, No.1, pp. 1976-1984, 2005.
  4. M.T. Thai, F. Wang, D.H. Du and X. Jia, "Coverage Problems in Wireless Sensor Networks: Designs and Analysis," International Journal of Sensor Networks, Vol.3, No.1, pp. 191-200, 2008. https://doi.org/10.1504/IJSNET.2008.018482
  5. H.J. Joe, J,B. Park, C.D. Lim, D.K. Woo, and H.S. Kim, "Instruction-Level Power Estimation for Sensor Networks," ETRI Journal, Vol.30, No.1, pp. 47-58, 2008. https://doi.org/10.4218/etrij.08.0106.0240
  6. M. Cardei and D.Z. Du, "Improving Wireless Sensor Network Lifetime through Power Aware Organization," Wireless Networks, Vol.11, No.3, pp. 333-340, 2005. https://doi.org/10.1007/s11276-005-6615-6
  7. S. Slijepcevic and M. Potkonjak, "Power Efficient Organization of Wireless sensor Networks," Communications, 2001. ICC 2001. IEEE International Conference on, Vol.2, No.1, pp. 472-476, 2001.
  8. J,H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, 1975.
  9. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, New York, 1989.
  10. M. Cardei and J. Wu, "Energy-Efficient Coverage Problems in Wireless Ad Hoc Sensor Networks," Computer Communications, Vol.29, No.4, pp. 413-420, 2006. https://doi.org/10.1016/j.comcom.2004.12.025
  11. 문병로, 유전알고리즘, 두양사, 서울, 2003.