Color Transfer using Color Contrast Based Templates

색의대비 기반 템플릿을 이용한 색상 변환

  • 박영섭 (에이알비전(주) 기술연구소 CVG팀) ;
  • 윤경현 (중앙대학교 컴퓨터공학과) ;
  • 이은석 (성균관대학교 정보통신공학부)
  • Published : 2009.05.30

Abstract

We propose a color transfer method that used color contrast based templates to express the visual difference clearly between objects, while remaining the quality of the input image. Our algorithm employs colors of both the input image and template distributed on the $a^{\ast}b^{\ast}$chrominance plane of CIE $L^{\ast}a^{\ast}b^{\ast}$color space. The templates are made by considering the effect of color contrast and have the shape of either a line or a curve represented color distribution of the basic colors based gradation image. These tempates can be modeled on spline curves. We also generate simply new templates with the different basic colors by moving the control points of that curve. The color transfer method using the templates is done through a regressive analysis and color matching. We maintained color coherence of the input image by transforming similarly the color distribution of an input image to the one of templates.

본 논문에서는 다양한 색상을 가지는 입력 영상의 화질올 잘 유지하면서, 객체들 간 시각적인 차이를 뚜렷하게 표현하기 위해 색의대비 기반 템플릿을 이용하는 색상 변환 알고리즘을 제안한다. 이 방법은 CIE $L^{\ast}a^{\ast}b^{\ast}$색상 공간 중 유채색의 $a^{\ast}b^{\ast}$평면상에 분포된 입력 영상파 템플릿의 색상 데이터를 이용한다. 템플릿은 색상간의 대비효과를 고려하여 만들어지며, 사용자가 임의로 지정한 가준 색상들을 기반한 그라데이션 영상의 색상 분포를 표시하는 칙선 또는 곡선의 형태를 가진다. 또한, 만들어진 템플릿을 스플라인 곡선으로 모델링하고, 모텔링된 곡선의 제어점을 변형함으로써 간단하게 다른 기준 색상을 가지는, 새로운 탱플릿을 만들 수도 있다. 탬플릿을 이용한 색상 변환은 회귀분석과 칼라 매칭을 통해 이루어지며, 입력 영상의 색상분포를 템플릿의 색상 분포와 유사하게 변형함으로써 입력 영상의 색상 일관성올 유지하였다.

Keywords

References

  1. 최기득, 유화, 2nd Edition, 미진사, 1999.
  2. A. H. Munsell, A Grammar of Colors, New York: Van Nostrand Reinhold Company, 1969.
  3. D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.Q. Xu, "Color Harmonization," ACM on Transactions on Computer Graphics, Vol.25, No.3, pp. 624-630, 2006. https://doi.org/10.1145/1141911.1141933
  4. S. Bae, S. Paris and F. Durand, "Two-scale Tone Management for Photographic Look," ACM on Transactions on Computer Graphics, Vol.25, No.3, pp. 637-645, 2006. https://doi.org/10.1145/1141911.1141935
  5. D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, "Interactive Local Adjustment of Tonal Values," ACM on Transactions on Computer Graphics, Vol.25, No.3, pp. 646-653, 2006. https://doi.org/10.1145/1141911.1141936
  6. E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, "Photographic tone reproduction for digital images," ACM on Transactions on Computer Graphics, Vol.21, No.3, pp. 267-276, 2002.
  7. S.N. Pattanaik, J.A. Ferwerda, M.D. Fairchild, and G.D. Greenberg, "A multiscale model of adaptation and spatial vision for realistic image display," SIGGRAPH'98, pp. 287-298, 1998.
  8. E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, "Color transfer between images," IEEE Computer Graphics and Applications, Vol.21, No.5, pp 34-41, 2001.
  9. Y. Chang, S. Saito, and M. Nakajima, "A Framework for Transfer Colors Based on the Basic Color Categories," CGI'03, pp.176-181, 2003.
  10. Y. Chang, S. Saito, K. Uchikawa, and M. Nakajima, "Example-Based Color Stylization of Images," ACM Transactions on Applied Perception, Vol.2, No.3, pp. 322-345, 2005. https://doi.org/10.1145/1077399.1077408
  11. S.C. Pei and Y.M. Chiu, "Background Adjustment and Saturation Enhancement in Ancient Chinese Paintings," IEEE Transactions on Image Processing, Vol.15, No.10, pp. 3230-3234, 2006. https://doi.org/10.1109/TIP.2006.877478
  12. R. Irony, D. Cohen-Or, and D. Lischinski, "Colorization by Example," In Eurographics Symposium on Rendering, pp. 201-210, 2005.
  13. L. Holtzschue, Understanding Color, John Wiley & Sons, Inc., New York, 2002.
  14. A.A. Gooch, S.C. Olsen, K. Tumblin, and B. Gooch, "Color2Gray: Salience-preserving color removal," ACM on Transactions on Computer Graphics, Vol.24, No.3, pp. 634-639, 2005. https://doi.org/10.1145/1073204.1073241
  15. K. Smith, P.E. Landes, J. Thollot, and K. Myszkowski, "Apparant Greyscale: A Simple and Fast Conversion to Perceptually Accurate Images and Video," Computer Graphics Forum, Vol.27, No.2, pp. 193-200, 2008. https://doi.org/10.1111/j.1467-8659.2008.01116.x
  16. L. Newmann, M. Cadik, and A. Nemcsics, "An efficient perception-based adaptive color to gray transformation," CAe'2007, pp. 73-80, 2007.
  17. T. Welsh, M. Ashikhmin, and K. Mueller, "Transferring Color to Greyscale Images," ACM on Transactions on Computer Graphics, Vol.21 , No.3, pp. 277-280, 2002.
  18. T. Luft, C. Colditz and O. Deussen, "Image Enhancement by Unsharp Masking the Depth Buffer," ACM on Transactions on Computer Graphics, Vol.25, No.3, pp. 1206-1213, 2006. https://doi.org/10.1145/1141911.1142016
  19. S. Bruckner and M.E. Groller, "Enhancing Depth-Perception with Flexible Volumetric Halos," IEEE TVCG, Vol.13, No.6, pp. 1344-1351, 2007.
  20. T. Ritschel, K. Smith, M. Ihrke, T. Grosch, K. Myszkowski and H.P. Seidel, "3D Unsharp Masking for Scene Coherent Enhancement,"ACM on Transactions on Computer Graphics, Vol.27, No.3, pp. 90:1-90:8, 2008.
  21. P. Cignoni, R. Scopigno, and M. Tarini, "A simple normal enhancement technique for interactive non-photorealistic renderings," Computer & Graphics, Vol.29, No.1, 2005.
  22. G. Krawczyk, K. Myszkowski, and H.P. Seidel, "Contrast Restoration by Adaptive Countershading," Computer Graphics Forum, Vol.26, No.3, 2007.